Anjuman Ayub , Atif Khurshid Wani , Suhaib Mohd Malik , Mehvish Ayub , Reena Singh , Chirag Chopra , Tabarak Malik
{"title":"Green nanoscience for healthcare: Advancing biomedical innovation through eco-synthesized nanoparticle","authors":"Anjuman Ayub , Atif Khurshid Wani , Suhaib Mohd Malik , Mehvish Ayub , Reena Singh , Chirag Chopra , Tabarak Malik","doi":"10.1016/j.btre.2025.e00913","DOIUrl":null,"url":null,"abstract":"<div><div>Green synthesis is an eco-friendly and sustainable approach to nanoparticle production using biological sources such as plant extracts and microorganisms. Unlike traditional chemical methods, it aligns with green chemistry principles by reducing toxic reagents, minimizing waste, and lowering environmental impact. Green-synthesized nanoparticles have shown great potential, especially in biomedicine, for targeted drug delivery, antimicrobial treatments, and imaging applications. Their properties can be finely tuned by controlling size, shape, and composition, supporting applications across electronics, healthcare, and environmental engineering. Characterization techniques are essential for analyzing their structural and functional attributes. However, challenges remain in terms of scalability, reproducibility, and lack of standardized synthesis protocols. The aim of this review is to explore recent advances in green nanoparticle synthesis, evaluate key mechanisms, highlight biomedical and environmental applications, and discuss current limitations. The review also emphasizes future directions and the need for interdisciplinary collaboration to unlock the full potential of green nanotechnology.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"47 ","pages":"Article e00913"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215017X25000402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0
Abstract
Green synthesis is an eco-friendly and sustainable approach to nanoparticle production using biological sources such as plant extracts and microorganisms. Unlike traditional chemical methods, it aligns with green chemistry principles by reducing toxic reagents, minimizing waste, and lowering environmental impact. Green-synthesized nanoparticles have shown great potential, especially in biomedicine, for targeted drug delivery, antimicrobial treatments, and imaging applications. Their properties can be finely tuned by controlling size, shape, and composition, supporting applications across electronics, healthcare, and environmental engineering. Characterization techniques are essential for analyzing their structural and functional attributes. However, challenges remain in terms of scalability, reproducibility, and lack of standardized synthesis protocols. The aim of this review is to explore recent advances in green nanoparticle synthesis, evaluate key mechanisms, highlight biomedical and environmental applications, and discuss current limitations. The review also emphasizes future directions and the need for interdisciplinary collaboration to unlock the full potential of green nanotechnology.
Biotechnology ReportsImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
15.80
自引率
0.00%
发文量
79
审稿时长
55 days
期刊介绍:
Biotechnology Reports covers all aspects of Biotechnology particularly those reports that are useful and informative and that will be of value to other researchers in related fields. Biotechnology Reports loves ground breaking science, but will also accept good science that can be of use to the biotechnology community. The journal maintains a high quality peer review where submissions are considered on the basis of scientific validity and technical quality. Acceptable paper types are research articles (short or full communications), methods, mini-reviews, and commentaries in the following areas: Healthcare and pharmaceutical biotechnology Agricultural and food biotechnology Environmental biotechnology Molecular biology, cell and tissue engineering and synthetic biology Industrial biotechnology, biofuels and bioenergy Nanobiotechnology Bioinformatics & systems biology New processes and products in biotechnology, bioprocess engineering.