Compression of big data collected in wind farm based on tensor train decomposition

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Keren Li , Wenqiang Zhang , Dandan Xiao , Peng Hou , Shuai Yan , Yang Wang , Xuerui Mao
{"title":"Compression of big data collected in wind farm based on tensor train decomposition","authors":"Keren Li ,&nbsp;Wenqiang Zhang ,&nbsp;Dandan Xiao ,&nbsp;Peng Hou ,&nbsp;Shuai Yan ,&nbsp;Yang Wang ,&nbsp;Xuerui Mao","doi":"10.1016/j.bdr.2025.100554","DOIUrl":null,"url":null,"abstract":"<div><div>To address the storage challenges stemming from large volumes of heterogeneous data in wind farms, we propose a data compression technique based on tensor train decomposition (TTD). Initially, we establish a tensor-based processing model to standardize the heterogeneous data originating from wind farms, which includes both structured SCADA (supervisory control and data acquisition) data and unstructured video and picture data. Subsequently, we introduce a TTD-based method designed to compress the heterogeneous data generated in wind farms while preserving the inherent spatial eigenstructure of the data. Finally, we validate the efficacy of the proposed method in alleviating data storage challenges by utilizing authentic wind farm datasets. Comparative analysis reveals that the TTD-based method outperforms previously proposed compression techniques, specifically the canonical polyadic (CP) and Tucker methods.</div></div>","PeriodicalId":56017,"journal":{"name":"Big Data Research","volume":"41 ","pages":"Article 100554"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Research","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579625000498","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

To address the storage challenges stemming from large volumes of heterogeneous data in wind farms, we propose a data compression technique based on tensor train decomposition (TTD). Initially, we establish a tensor-based processing model to standardize the heterogeneous data originating from wind farms, which includes both structured SCADA (supervisory control and data acquisition) data and unstructured video and picture data. Subsequently, we introduce a TTD-based method designed to compress the heterogeneous data generated in wind farms while preserving the inherent spatial eigenstructure of the data. Finally, we validate the efficacy of the proposed method in alleviating data storage challenges by utilizing authentic wind farm datasets. Comparative analysis reveals that the TTD-based method outperforms previously proposed compression techniques, specifically the canonical polyadic (CP) and Tucker methods.
基于张量列分解的风电场大数据压缩
为了解决风电场中大量异构数据带来的存储挑战,我们提出了一种基于张量列分解(TTD)的数据压缩技术。首先,我们建立了一个基于张量的处理模型来标准化来自风电场的异构数据,其中包括结构化SCADA(监控和数据采集)数据和非结构化视频和图像数据。随后,我们引入了一种基于ttd的方法,该方法旨在压缩风电场产生的异构数据,同时保留数据固有的空间特征结构。最后,我们利用真实的风电场数据集验证了所提出方法在缓解数据存储挑战方面的有效性。对比分析表明,基于ttd的方法优于先前提出的压缩技术,特别是规范多进(CP)和塔克方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Big Data Research
Big Data Research Computer Science-Computer Science Applications
CiteScore
8.40
自引率
3.00%
发文量
0
期刊介绍: The journal aims to promote and communicate advances in big data research by providing a fast and high quality forum for researchers, practitioners and policy makers from the very many different communities working on, and with, this topic. The journal will accept papers on foundational aspects in dealing with big data, as well as papers on specific Platforms and Technologies used to deal with big data. To promote Data Science and interdisciplinary collaboration between fields, and to showcase the benefits of data driven research, papers demonstrating applications of big data in domains as diverse as Geoscience, Social Web, Finance, e-Commerce, Health Care, Environment and Climate, Physics and Astronomy, Chemistry, life sciences and drug discovery, digital libraries and scientific publications, security and government will also be considered. Occasionally the journal may publish whitepapers on policies, standards and best practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信