Michael A. Friedman , Yasmina Zeineddine , Olivier Tuyambaze , Wesam Elhawabri , Ahmed Al Shammary , Louis Stodieck , Virginia L. Ferguson , Henry J. Donahue
{"title":"Simulated microgravity accurately models long-duration spaceflight effects on bone and skeletal muscle in skeletally immature mice","authors":"Michael A. Friedman , Yasmina Zeineddine , Olivier Tuyambaze , Wesam Elhawabri , Ahmed Al Shammary , Louis Stodieck , Virginia L. Ferguson , Henry J. Donahue","doi":"10.1016/j.bonr.2025.101871","DOIUrl":null,"url":null,"abstract":"<div><div>Spaceflight (SF) and disuse result in decreases in bone and skeletal muscle volume that increase fracture risk. Hindlimb unloading (HLU) has been widely used to model the effects of microgravity. However, the effects of SF and HLU on bone and skeletal muscle have not been directly compared during long-duration SF. We examined the effects of five weeks of SF and HLU in the femurs of female Balb/c mice. For the first time, SF and HLU were directly compared using mice of the same age, strain, sex, and duration as a mission to the ISS. We hypothesized that HLU would accurately model SF, resulting in similar bone and skeletal muscle loss. Ten-week old female Balb/c mice were assigned to baseline, vivarium control, habitat control, and SF groups (n = 10/group). A separate cohort of 10-week female Balb/c mice were placed in HLU or control (n = 10/group). Femoral cortical area increased from baseline in all groups except HLU. The magnitudes of increases were lower in the SF and HLU groups. Similar effects were seen in trabecular bone. Femoral ultimate force decreased in SF and HLU groups, compared to control groups. Gastrocnemius and quadriceps mass was lower in SF and HLU mice than in control mice. HLU resulted in greater bone loss than SF, possibly due to differences in housing conditions. HLU effectively models long-duration effects of SF on the musculoskeletal system, highlighting its utility for studying astronaut health risks and developing countermeasures.</div></div>","PeriodicalId":9043,"journal":{"name":"Bone Reports","volume":"26 ","pages":"Article 101871"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352187225000488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Spaceflight (SF) and disuse result in decreases in bone and skeletal muscle volume that increase fracture risk. Hindlimb unloading (HLU) has been widely used to model the effects of microgravity. However, the effects of SF and HLU on bone and skeletal muscle have not been directly compared during long-duration SF. We examined the effects of five weeks of SF and HLU in the femurs of female Balb/c mice. For the first time, SF and HLU were directly compared using mice of the same age, strain, sex, and duration as a mission to the ISS. We hypothesized that HLU would accurately model SF, resulting in similar bone and skeletal muscle loss. Ten-week old female Balb/c mice were assigned to baseline, vivarium control, habitat control, and SF groups (n = 10/group). A separate cohort of 10-week female Balb/c mice were placed in HLU or control (n = 10/group). Femoral cortical area increased from baseline in all groups except HLU. The magnitudes of increases were lower in the SF and HLU groups. Similar effects were seen in trabecular bone. Femoral ultimate force decreased in SF and HLU groups, compared to control groups. Gastrocnemius and quadriceps mass was lower in SF and HLU mice than in control mice. HLU resulted in greater bone loss than SF, possibly due to differences in housing conditions. HLU effectively models long-duration effects of SF on the musculoskeletal system, highlighting its utility for studying astronaut health risks and developing countermeasures.
Bone ReportsMedicine-Orthopedics and Sports Medicine
CiteScore
4.30
自引率
4.00%
发文量
444
审稿时长
57 days
期刊介绍:
Bone Reports is an interdisciplinary forum for the rapid publication of Original Research Articles and Case Reports across basic, translational and clinical aspects of bone and mineral metabolism. The journal publishes papers that are scientifically sound, with the peer review process focused principally on verifying sound methodologies, and correct data analysis and interpretation. We welcome studies either replicating or failing to replicate a previous study, and null findings. We fulfil a critical and current need to enhance research by publishing reproducibility studies and null findings.