Heterovalent Substitution of K2SrP2O7:Cr3+ to Achieve Anti-Thermal-Quenching Broadband Near-Infrared Luminescence

IF 3.8
Hexi Zhang,  and , Yuanbing Mao*, 
{"title":"Heterovalent Substitution of K2SrP2O7:Cr3+ to Achieve Anti-Thermal-Quenching Broadband Near-Infrared Luminescence","authors":"Hexi Zhang,&nbsp; and ,&nbsp;Yuanbing Mao*,&nbsp;","doi":"10.1021/acsaom.5c00201","DOIUrl":null,"url":null,"abstract":"<p >Broadband near-infrared (NIR) light sources based on phosphor-converted light-emitting diodes are highly desirable for biochemical analysis and medical diagnosis applications. However, thermal quenching remains a demanding challenge for developing efficient NIR phosphors. Herein, we report the enhancement of both quantum efficiency and thermal stability in Cr<sup>3+</sup>-activated K<sub>2</sub>SrP<sub>2</sub>O<sub>7</sub> phosphors through a heterovalent substitution strategy by replacing Sr<sup>2+</sup> with Al<sup>3+</sup> in K<sub>2</sub>Sr<sub>1–<i>x</i></sub>Al<sub><i>x</i></sub>P<sub>2</sub>O<sub>7</sub> (0.05 ≤ <i>x</i> ≤ 0.2) to obtain optimized broadband NIR emission. Structural modulation via Al<sup>3+</sup> substitution leads to the optimized composition, K<sub>2</sub>Sr<sub>0.88</sub>Al<sub>0.1</sub>P<sub>2</sub>O<sub>7</sub>:0.02Cr<sup>3+</sup>, which emits across a broad NIR range of 650–1100 nm peaking at 807 nm with a full width at half-maximum of ∼130 nm under 448 nm excitation. Remarkably, its emission intensity at 150 °C remains 120% of the initial value at room temperature, demonstrating a rare antithermal-quenching behavior. Temperature-dependent XRD studies further reveal that Al<sup>3+</sup> substitution effectively suppresses lattice expansion at elevated temperatures, indicating enhanced lattice stability under thermal excitation. Detailed structural and spectral analyses show that the substitution enhances local site symmetry, reduces electron–phonon coupling, increases thermally induced absorption probability, and fortifies energetic barriers against nonradiative transitions. These synergistic effects collectively endow this NIR phosphor with a superior thermal stability. Furthermore, NIR light-emitting diodes fabricated with this phosphor exhibit strong potential for applications in information identification, nondestructive detection, and night vision technologies. This study demonstrates a local structure engineering strategy for designing thermally robust Cr<sup>3+</sup>-activated NIR phosphors, offering valuable insights into material discovery and NIR spectroscopy device development.</p>","PeriodicalId":29803,"journal":{"name":"ACS Applied Optical Materials","volume":"3 8","pages":"1766–1776"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsaom.5c00201","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Optical Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaom.5c00201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Broadband near-infrared (NIR) light sources based on phosphor-converted light-emitting diodes are highly desirable for biochemical analysis and medical diagnosis applications. However, thermal quenching remains a demanding challenge for developing efficient NIR phosphors. Herein, we report the enhancement of both quantum efficiency and thermal stability in Cr3+-activated K2SrP2O7 phosphors through a heterovalent substitution strategy by replacing Sr2+ with Al3+ in K2Sr1–xAlxP2O7 (0.05 ≤ x ≤ 0.2) to obtain optimized broadband NIR emission. Structural modulation via Al3+ substitution leads to the optimized composition, K2Sr0.88Al0.1P2O7:0.02Cr3+, which emits across a broad NIR range of 650–1100 nm peaking at 807 nm with a full width at half-maximum of ∼130 nm under 448 nm excitation. Remarkably, its emission intensity at 150 °C remains 120% of the initial value at room temperature, demonstrating a rare antithermal-quenching behavior. Temperature-dependent XRD studies further reveal that Al3+ substitution effectively suppresses lattice expansion at elevated temperatures, indicating enhanced lattice stability under thermal excitation. Detailed structural and spectral analyses show that the substitution enhances local site symmetry, reduces electron–phonon coupling, increases thermally induced absorption probability, and fortifies energetic barriers against nonradiative transitions. These synergistic effects collectively endow this NIR phosphor with a superior thermal stability. Furthermore, NIR light-emitting diodes fabricated with this phosphor exhibit strong potential for applications in information identification, nondestructive detection, and night vision technologies. This study demonstrates a local structure engineering strategy for designing thermally robust Cr3+-activated NIR phosphors, offering valuable insights into material discovery and NIR spectroscopy device development.

K2SrP2O7:Cr3+的异价取代实现抗热猝灭宽带近红外发光
基于磷转换发光二极管的宽带近红外(NIR)光源在生化分析和医学诊断应用中是非常理想的。然而,热猝灭仍然是开发高效近红外荧光粉的一个艰巨挑战。本文中,我们报道了通过在K2Sr1-xAlxP2O7中以Al3+取代Sr2+(0.05≤x≤0.2)的异价替代策略,Cr3+激活的K2SrP2O7荧光粉的量子效率和热稳定性得到增强,从而获得优化的宽带近红外发射。通过Al3+取代的结构调制得到了优化后的化合物k2sr0.88 al0.1 p2o7: 0.2 cr3 +,其近红外光谱范围为650-1100 nm,在448 nm激发下,峰值为807 nm,半峰宽为~ 130 nm。值得注意的是,其在150℃时的发射强度仍然是室温下初始值的120%,表现出罕见的抗热猝灭行为。温度相关的XRD研究进一步表明,Al3+取代在高温下有效抑制了晶格膨胀,表明在热激发下晶格稳定性增强。详细的结构和光谱分析表明,取代增强了局部位置对称性,减少了电子-声子耦合,增加了热诱导吸收概率,并加强了非辐射跃迁的能量屏障。这些协同效应共同赋予了这种近红外荧光粉优越的热稳定性。此外,用这种荧光粉制造的近红外发光二极管在信息识别、无损检测和夜视技术方面显示出强大的应用潜力。本研究展示了一种局部结构工程策略,用于设计热坚固的Cr3+活化近红外荧光粉,为材料发现和近红外光谱器件开发提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Optical Materials
ACS Applied Optical Materials 材料科学-光学材料-
CiteScore
1.10
自引率
0.00%
发文量
0
期刊介绍: ACS Applied Optical Materials is an international and interdisciplinary forum to publish original experimental and theoretical including simulation and modeling research in optical materials complementing the ACS Applied Materials portfolio. With a focus on innovative applications ACS Applied Optical Materials also complements and expands the scope of existing ACS publications that focus on fundamental aspects of the interaction between light and matter in materials science including ACS Photonics Macromolecules Journal of Physical Chemistry C ACS Nano and Nano Letters.The scope of ACS Applied Optical Materials includes high quality research of an applied nature that integrates knowledge in materials science chemistry physics optical science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信