Green Synthesis of Tb3+-Doped CaMoO4 Nanothermometers Using Plant Extract: Enhanced Optical Properties for Temperature Sensing Applications

IF 3.8
Daniela F. Duarte, Gilberto J. Arruda, Luiz A. O. Nunes, Sandro M. Lima and Luis H. C. Andrade*, 
{"title":"Green Synthesis of Tb3+-Doped CaMoO4 Nanothermometers Using Plant Extract: Enhanced Optical Properties for Temperature Sensing Applications","authors":"Daniela F. Duarte,&nbsp;Gilberto J. Arruda,&nbsp;Luiz A. O. Nunes,&nbsp;Sandro M. Lima and Luis H. C. Andrade*,&nbsp;","doi":"10.1021/acsaom.5c00208","DOIUrl":null,"url":null,"abstract":"<p >Luminescent temperature sensors enable precise thermal monitoring at cellular levels, facilitating cancer treatment approaches and industrial process monitoring across wide temperature ranges. These sensors, when constructed from inorganic matrices incorporating specific luminescence-activating centers, allow temperature estimation through their emission characteristics. This work investigates the optical properties of Tb<sup>3+</sup>-doped CaMoO<sub>4</sub> crystals synthesized via an environmentally friendly coprecipitation method using an extract from the leaves of the <i>Tabebuia aurea</i> tree. Spectroscopic characterization confirms the formation of the CaMoO<sub>4</sub> crystalline phase and successful incorporation of Tb<sup>3+</sup> ions into the crystal lattice. Particle morphology was examined using scanning electron microscopy. Temperature-dependent luminescence measurements reveal exceptional performance as an optical sensor, with a calculated relative sensitivity of 2.8% K<sup>–1</sup> at 363 K, surpassing previously reported values for other Tb<sup>3+</sup>-doped materials. This green synthesis approach demonstrates that environmentally sustainable methods can produce nanothermometers with enhanced sensing capabilities, surpassing conventionally synthesized alternatives, and with significantly reduced organic residues, which correlates with a superior radiative lifetime and excellent stability and reproducibility for practical applications.</p>","PeriodicalId":29803,"journal":{"name":"ACS Applied Optical Materials","volume":"3 8","pages":"1810–1820"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsaom.5c00208","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Optical Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaom.5c00208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Luminescent temperature sensors enable precise thermal monitoring at cellular levels, facilitating cancer treatment approaches and industrial process monitoring across wide temperature ranges. These sensors, when constructed from inorganic matrices incorporating specific luminescence-activating centers, allow temperature estimation through their emission characteristics. This work investigates the optical properties of Tb3+-doped CaMoO4 crystals synthesized via an environmentally friendly coprecipitation method using an extract from the leaves of the Tabebuia aurea tree. Spectroscopic characterization confirms the formation of the CaMoO4 crystalline phase and successful incorporation of Tb3+ ions into the crystal lattice. Particle morphology was examined using scanning electron microscopy. Temperature-dependent luminescence measurements reveal exceptional performance as an optical sensor, with a calculated relative sensitivity of 2.8% K–1 at 363 K, surpassing previously reported values for other Tb3+-doped materials. This green synthesis approach demonstrates that environmentally sustainable methods can produce nanothermometers with enhanced sensing capabilities, surpassing conventionally synthesized alternatives, and with significantly reduced organic residues, which correlates with a superior radiative lifetime and excellent stability and reproducibility for practical applications.

利用植物提取物绿色合成Tb3+掺杂CaMoO4纳米温度计:用于温度传感应用的增强光学特性
发光温度传感器能够在细胞水平上进行精确的热监测,促进癌症治疗方法和跨宽温度范围的工业过程监测。当这些传感器由含有特定发光激活中心的无机矩阵构成时,可以通过其发射特性来估计温度。这项工作研究了Tb3+掺杂CaMoO4晶体的光学性质,该晶体是通过环境友好的共沉淀法合成的,使用的是金银树叶子的提取物。光谱表征证实了CaMoO4晶相的形成以及Tb3+离子成功进入晶格。用扫描电镜观察颗粒形态。温度相关的发光测量显示了作为光学传感器的卓越性能,在363 K时计算出的相对灵敏度为2.8% K - 1,超过了先前报道的其他Tb3+掺杂材料的值。这种绿色合成方法表明,环境可持续的方法可以生产出具有增强传感能力的纳米温度计,超过传统合成的替代品,并且有机残留物显著减少,这与优越的辐射寿命、出色的稳定性和可重复性有关,可用于实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Optical Materials
ACS Applied Optical Materials 材料科学-光学材料-
CiteScore
1.10
自引率
0.00%
发文量
0
期刊介绍: ACS Applied Optical Materials is an international and interdisciplinary forum to publish original experimental and theoretical including simulation and modeling research in optical materials complementing the ACS Applied Materials portfolio. With a focus on innovative applications ACS Applied Optical Materials also complements and expands the scope of existing ACS publications that focus on fundamental aspects of the interaction between light and matter in materials science including ACS Photonics Macromolecules Journal of Physical Chemistry C ACS Nano and Nano Letters.The scope of ACS Applied Optical Materials includes high quality research of an applied nature that integrates knowledge in materials science chemistry physics optical science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信