Cortical Network Topological Modifications Underlie Clinical Evolution in the Acute Phase of Ischemic Stroke.

IF 3.7
Chiara Iacovelli, Giuseppe Reale, Giulia Baldazzi, Danilo Pani, Aurelia Zauli, Marco Moci, Paolo Manganotti, Lucio Marinelli, Simona Sacco, Giovanni Furlanis, Miloš Ajčević, Silvia Giovannini, Simona Crosetti, Matteo Grazzini, Marta Garbuglia, Pietro Caliandro
{"title":"Cortical Network Topological Modifications Underlie Clinical Evolution in the Acute Phase of Ischemic Stroke.","authors":"Chiara Iacovelli, Giuseppe Reale, Giulia Baldazzi, Danilo Pani, Aurelia Zauli, Marco Moci, Paolo Manganotti, Lucio Marinelli, Simona Sacco, Giovanni Furlanis, Miloš Ajčević, Silvia Giovannini, Simona Crosetti, Matteo Grazzini, Marta Garbuglia, Pietro Caliandro","doi":"10.1177/15459683251363243","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundFollowing stroke, brain networks can be described by strength of local connections (clustering coefficient [<i>C</i>w]) and strength of global interconnections (path length [<i>L</i>w]) between nodes, and their balance (Small-worldness [<i>S</i>w]). <i>Objective</i>. To identify electroencephalography (EEG) networks predicting clinical evolution in stroke through a multicenter cross-sectional study.MethodsWe consecutively recruited 87 anterior circulation ischemic stroke patients. We obtained resting-state EEG (31 electrodes, 10-10 system) within 24 hours from stroke (<i>T</i>0) and at discharge from stroke unit (4-10 days after stroke; <i>T</i>1). EEG data were elaborated with EEGLAB and Lagged Linear Coherence among cortical sources of EEG signals was analyzed using eLORETA. We performed a multiple linear regression with National Institutes of Health Stroke Scale (NIHSS) at <i>T</i>0 and <i>T</i>1 as dependent variables and <i>C</i>w, <i>L</i>w, and <i>S</i>w of delta, theta, and alpha networks as independent variables.ResultsWe found a negative association between alpha1 <i>S</i>w and NIHSS at <i>T</i>0 (β = -.232, <i>P</i> = .04) meaning that the lower is alpha efficiency the higher is clinical severity and a positive association between delta <i>S</i>w and NIHSS at <i>T</i>1 (β = .423, <i>P</i> < .001) meaning that the higher is delta efficiency the higher is clinical severity. We found positive association between delta <i>S</i>w at <i>T</i>0 and NIHSS at <i>T</i>1 (β = .259, <i>P</i> = .02), meaning that the higher is delta efficiency in the hyperacute phase the higher is clinical severity at <i>T</i>1.ConclusionsA higher delta <i>S</i>w within 24 hours after stroke is associated to higher NIHSS within 10 days. Delta brain network rearrangement in the hyperacute phase is a potential neurophysiological measure to be integrated in multi-modal prognostic models.</p>","PeriodicalId":94158,"journal":{"name":"Neurorehabilitation and neural repair","volume":" ","pages":"15459683251363243"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurorehabilitation and neural repair","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15459683251363243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

BackgroundFollowing stroke, brain networks can be described by strength of local connections (clustering coefficient [Cw]) and strength of global interconnections (path length [Lw]) between nodes, and their balance (Small-worldness [Sw]). Objective. To identify electroencephalography (EEG) networks predicting clinical evolution in stroke through a multicenter cross-sectional study.MethodsWe consecutively recruited 87 anterior circulation ischemic stroke patients. We obtained resting-state EEG (31 electrodes, 10-10 system) within 24 hours from stroke (T0) and at discharge from stroke unit (4-10 days after stroke; T1). EEG data were elaborated with EEGLAB and Lagged Linear Coherence among cortical sources of EEG signals was analyzed using eLORETA. We performed a multiple linear regression with National Institutes of Health Stroke Scale (NIHSS) at T0 and T1 as dependent variables and Cw, Lw, and Sw of delta, theta, and alpha networks as independent variables.ResultsWe found a negative association between alpha1 Sw and NIHSS at T0 (β = -.232, P = .04) meaning that the lower is alpha efficiency the higher is clinical severity and a positive association between delta Sw and NIHSS at T1 (β = .423, P < .001) meaning that the higher is delta efficiency the higher is clinical severity. We found positive association between delta Sw at T0 and NIHSS at T1 (β = .259, P = .02), meaning that the higher is delta efficiency in the hyperacute phase the higher is clinical severity at T1.ConclusionsA higher delta Sw within 24 hours after stroke is associated to higher NIHSS within 10 days. Delta brain network rearrangement in the hyperacute phase is a potential neurophysiological measure to be integrated in multi-modal prognostic models.

脑缺血急性期脑皮层网络拓扑结构改变是脑卒中临床演变的基础。
脑卒中后,大脑网络可以通过节点之间的局部连接强度(聚类系数[Cw])和全局连接强度(路径长度[Lw])以及它们的平衡(小世界性[Sw])来描述。目标。通过一项多中心横断面研究确定预测脑卒中临床演变的脑电图(EEG)网络。方法连续招募前循环缺血性脑卒中患者87例。我们在脑卒中后24小时内(T0)和脑卒中单元放电时(脑卒中后4-10天;T1)获得静息状态EEG(31个电极,10-10制)。利用EEGLAB对脑电信号进行分析,利用eLORETA对脑电信号皮层源间的滞后线性相干性进行分析。我们以美国国立卫生研究院卒中量表(NIHSS)在T0和T1作为因变量,δ、θ和α网络的Cw、Lw和Sw作为自变量,进行多元线性回归。结果alpha - 1 Sw与NIHSS在T0时呈负相关(β = - 0.232, P =。04)意味着α效率越低,临床严重程度越高,T1时δ Sw与NIHSS呈正相关(β =。423, T0时的psw和T1时的NIHSS (β =。259, p =。02),这意味着超急性期δ效率越高,T1时的临床严重程度越高。结论脑卒中后24小时内δ Sw升高与10天内NIHSS升高相关。超急性期的Delta脑网络重排是一种潜在的神经生理指标,可整合到多模式预后模型中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信