A Multiple Imputation Approach for the Cumulative Incidence, with Implications for Variance Estimation.

IF 2.1 4区 数学 Q1 STATISTICS & PROBABILITY
American Statistician Pub Date : 2025-08-01 Epub Date: 2025-02-28 DOI:10.1080/00031305.2025.2453674
Elizabeth C Chase, Philip S Boonstra, Jeremy M G Taylor
{"title":"A Multiple Imputation Approach for the Cumulative Incidence, with Implications for Variance Estimation.","authors":"Elizabeth C Chase, Philip S Boonstra, Jeremy M G Taylor","doi":"10.1080/00031305.2025.2453674","DOIUrl":null,"url":null,"abstract":"<p><p>We present an alternative approach to estimating the cumulative incidence function that uses non-parametric multiple imputation to reduce the problem to that of estimating a binomial proportion. In the standard competing risks setting, we show mathematically and empirically that our imputation-based estimator is equivalent to the Aalen-Johansen estimator of the cumulative incidence given a sufficient number of imputations. However, our approach allows for the use of a wider variety of methods for the analysis of binary outcomes, including preferred options for uncertainty estimation. While we focus on the cumulative incidence function, the multiple imputation approach likely extends to more complex problems in competing risks.</p>","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"79 3","pages":"291-301"},"PeriodicalIF":2.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360614/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Statistician","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00031305.2025.2453674","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We present an alternative approach to estimating the cumulative incidence function that uses non-parametric multiple imputation to reduce the problem to that of estimating a binomial proportion. In the standard competing risks setting, we show mathematically and empirically that our imputation-based estimator is equivalent to the Aalen-Johansen estimator of the cumulative incidence given a sufficient number of imputations. However, our approach allows for the use of a wider variety of methods for the analysis of binary outcomes, including preferred options for uncertainty estimation. While we focus on the cumulative incidence function, the multiple imputation approach likely extends to more complex problems in competing risks.

累积发生率的多重归算方法及其对方差估计的影响。
我们提出了一种估计累积关联函数的替代方法,该方法使用非参数多重imputation将问题减少到估计二项比例的问题。在标准竞争风险设置中,我们在数学上和经验上表明,在给定足够数量的估算的情况下,我们基于估算的估计量相当于累积发生率的aallen - johansen估计量。然而,我们的方法允许使用更广泛的方法来分析二元结果,包括不确定性估计的首选选项。虽然我们关注的是累积关联函数,但多重归算方法可能会扩展到竞争风险中更复杂的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
American Statistician
American Statistician 数学-统计学与概率论
CiteScore
3.50
自引率
5.60%
发文量
64
审稿时长
>12 weeks
期刊介绍: Are you looking for general-interest articles about current national and international statistical problems and programs; interesting and fun articles of a general nature about statistics and its applications; or the teaching of statistics? Then you are looking for The American Statistician (TAS), published quarterly by the American Statistical Association. TAS contains timely articles organized into the following sections: Statistical Practice, General, Teacher''s Corner, History Corner, Interdisciplinary, Statistical Computing and Graphics, Reviews of Books and Teaching Materials, and Letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信