Marion Saunier, Adeline Humbert, Victor Kreis, Johann Peltier, Arianna Tisba, Sylvie Auxilien, Marion Blum, Isabelle Caldelari, Jean-François Lucier, Joe Ueda, Daniel Gautheret, Claire Toffano-Nioche, Jessica Andreani, Louis-Charles Fortier, Olga Soutourina
{"title":"Deciphering the RNA-based regulation mechanism of the phage-encoded AbiF system in Clostridioides difficile.","authors":"Marion Saunier, Adeline Humbert, Victor Kreis, Johann Peltier, Arianna Tisba, Sylvie Auxilien, Marion Blum, Isabelle Caldelari, Jean-François Lucier, Joe Ueda, Daniel Gautheret, Claire Toffano-Nioche, Jessica Andreani, Louis-Charles Fortier, Olga Soutourina","doi":"10.1371/journal.pgen.1011831","DOIUrl":null,"url":null,"abstract":"<p><p>Clostridioides difficile is the major cause of nosocomial infections associated with antibiotic therapy. The severity of C. difficile infections increased worldwide with the emergence of hypervirulent strains, including 027 ribotype epidemic strains. Many aspects of C. difficile adaptation strategies during pathogenesis remain poorly understood. This pathogen thrives in gut communities that are rich in microbes and phages. To regulate horizontal transfer of genetic material during its infection cycle, C. difficile relies on diverse mechanisms. More specifically, CRISPR (clustered regularly interspaced short palindromic repeats)-Cas and Toxin-Antitoxin (TA) systems contribute to prophage maintenance, prevention of phage infection, and stress response. Abortive infection (Abi) systems can provide additional lines of anti-phage defense. RNAs have emerged as key components of these systems including CRISPR RNAs and antitoxin RNAs within type I and type III TA. We report here the identification of a new AbiF-like system within a prophage of the hypervirulent C. difficile strain R20291. It is associated with an Abi_2/AbiD/F protein family largely distributed in Bacillota and Pseudomonadota with structural links to ancestral Cas13 proteins at the origin of the RNA-targeting CRISPR-Cas13 systems. We demonstrated toxic activity of the AbiFCd protein in C. difficile and in Escherichia coli and negative regulation of the abiFCd expression by an associated non-coding RNA RCd22. RCd22 contains two conserved abiF motifs and is active both in cis and in trans to neutralize the toxin by direct RNA-protein interaction, similar to RNA antitoxin in type III TA. A mass spectrometry interactomics analysis of protein fractions from MS2-Affinity Purification coupled with RNA sequencing (MAPS) revealed the AbiFCd protein among the most enriched RCd22 partners in C. difficile. Structural modeling of the RNA-protein complex and mutagenesis analysis revealed key positions on both protein and RNA partners for this interaction and toxic activity. In summary, these findings provide valuable insights into the mechanisms of interaction between bacteria and phages, which are pertinent to the advancement of phage therapy, genome editing, epidemiological surveillance, and the formulation of novel therapeutic approaches.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 8","pages":"e1011831"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373285/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011831","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Clostridioides difficile is the major cause of nosocomial infections associated with antibiotic therapy. The severity of C. difficile infections increased worldwide with the emergence of hypervirulent strains, including 027 ribotype epidemic strains. Many aspects of C. difficile adaptation strategies during pathogenesis remain poorly understood. This pathogen thrives in gut communities that are rich in microbes and phages. To regulate horizontal transfer of genetic material during its infection cycle, C. difficile relies on diverse mechanisms. More specifically, CRISPR (clustered regularly interspaced short palindromic repeats)-Cas and Toxin-Antitoxin (TA) systems contribute to prophage maintenance, prevention of phage infection, and stress response. Abortive infection (Abi) systems can provide additional lines of anti-phage defense. RNAs have emerged as key components of these systems including CRISPR RNAs and antitoxin RNAs within type I and type III TA. We report here the identification of a new AbiF-like system within a prophage of the hypervirulent C. difficile strain R20291. It is associated with an Abi_2/AbiD/F protein family largely distributed in Bacillota and Pseudomonadota with structural links to ancestral Cas13 proteins at the origin of the RNA-targeting CRISPR-Cas13 systems. We demonstrated toxic activity of the AbiFCd protein in C. difficile and in Escherichia coli and negative regulation of the abiFCd expression by an associated non-coding RNA RCd22. RCd22 contains two conserved abiF motifs and is active both in cis and in trans to neutralize the toxin by direct RNA-protein interaction, similar to RNA antitoxin in type III TA. A mass spectrometry interactomics analysis of protein fractions from MS2-Affinity Purification coupled with RNA sequencing (MAPS) revealed the AbiFCd protein among the most enriched RCd22 partners in C. difficile. Structural modeling of the RNA-protein complex and mutagenesis analysis revealed key positions on both protein and RNA partners for this interaction and toxic activity. In summary, these findings provide valuable insights into the mechanisms of interaction between bacteria and phages, which are pertinent to the advancement of phage therapy, genome editing, epidemiological surveillance, and the formulation of novel therapeutic approaches.
期刊介绍:
PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill).
Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.