{"title":"Bibliometric analysis of research on artificial İntelligence applications in breast cancer diagnosis.","authors":"Bengünur Ekinci, Hakan Tekedere","doi":"10.1177/09287329251362602","DOIUrl":null,"url":null,"abstract":"<p><p>ObjectiveThis analysis aims to examine studies on artificial intelligence (AI) applications in breast cancer diagnosis through bibliometric methods, focusing on temporal and geographical trends. It contributes to shaping the field's roadmap and helping researchers adapt to technological innovations.MethodA comprehensive search was conducted in the Web of Science (WOS) database. Bibliometric analyses of data from 2013-2024 were performed using VOSviewer and Bibliometrix R programs.ResultsThe analysis included 1537 articles. A significant rise in research activity was observed in 2019. The thematic analysis highlighted topics like histopathology, feature selection, deep learning, and machine learning. India was the most productive country with 405 studies. Keyword analysis showed increased usage of terms like transfer learning, CNN, and radiomics. U.S. was the most cited country with 7511 citations. Concept co-occurrence analysis revealed strong associations between terms such as feature selection, datasets, algorithm performance, and classification methods. Bejnordi's 2017 study was identified as the most influential, with 1909 citations.Discussion and ConclusionThis study identifies key authors, influential works, and trending topics, offering a broad understanding of the field's structure and evolution. It helps outline the advancements and emerging directions in AI applications for breast cancer diagnosis.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":" ","pages":"9287329251362602"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09287329251362602","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
ObjectiveThis analysis aims to examine studies on artificial intelligence (AI) applications in breast cancer diagnosis through bibliometric methods, focusing on temporal and geographical trends. It contributes to shaping the field's roadmap and helping researchers adapt to technological innovations.MethodA comprehensive search was conducted in the Web of Science (WOS) database. Bibliometric analyses of data from 2013-2024 were performed using VOSviewer and Bibliometrix R programs.ResultsThe analysis included 1537 articles. A significant rise in research activity was observed in 2019. The thematic analysis highlighted topics like histopathology, feature selection, deep learning, and machine learning. India was the most productive country with 405 studies. Keyword analysis showed increased usage of terms like transfer learning, CNN, and radiomics. U.S. was the most cited country with 7511 citations. Concept co-occurrence analysis revealed strong associations between terms such as feature selection, datasets, algorithm performance, and classification methods. Bejnordi's 2017 study was identified as the most influential, with 1909 citations.Discussion and ConclusionThis study identifies key authors, influential works, and trending topics, offering a broad understanding of the field's structure and evolution. It helps outline the advancements and emerging directions in AI applications for breast cancer diagnosis.
期刊介绍:
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered:
1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables.
2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words.
Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics.
4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors.
5.Letters to the Editors: Discussions or short statements (not indexed).