Onofrio Marco Pistillo, Priscilla Farina, Marcos Antonio Bezerra-Santos, Ilaria D'Isita, Petr Volf, Domenico Otranto, Giovanni Benelli, Giacinto Salvatore Germinara
{"title":"A simplified system for the detection of antennal responses to host-borne volatile organic compounds in sand flies.","authors":"Onofrio Marco Pistillo, Priscilla Farina, Marcos Antonio Bezerra-Santos, Ilaria D'Isita, Petr Volf, Domenico Otranto, Giovanni Benelli, Giacinto Salvatore Germinara","doi":"10.1186/s13071-025-06998-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Phlebotomus (Larroussius) perniciosus (Diptera: Psychodidae) is the most common and predominant vector of Leishmania infantum in the Western Mediterranean region. Volatile organic compounds (VOCs) produced by vertebrates are important cues affecting the behaviour of blood-feeding insects. Generally, the identification of putative behaviourally active VOCs involves three distinct phases: extraction, chemical characterization and chemoreceptivity evaluation using electrophysiological techniques. Here, we present a simplified gas chromatography-mass spectrometry-electroantennographic detection (GC-MS-EAD) setup adapted for screening bioactive compounds in sand flies, in which the chemical identification and antennal responses are recorded simultaneously.</p><p><strong>Methods: </strong>The method integrates: (i) a flow-splitter that balances the flow rate of the two outgoing streams, (ii) GC columns with different lengths and diameters in the two sections splitter-MS and splitter-EAD and (iii) an antennal signal amplifier. The GC-MS-EAD analysis was applied to headspace solid-phase microextraction (HS-SPME) extracts from a healthy dog, and antennal responses were recorded in female P. perniciosus sand flies.</p><p><strong>Results: </strong>The canine VOC profile was predominantly composed of aldehydes, with hexanal and nonanal eliciting the strongest antennal responses in P. perniciosus.</p><p><strong>Conclusions: </strong>This simplified GC-MS-EAD system shows promise for broader application in the study of host-vector interactions. Its use across different host-vector pairs may enhance our understanding of these relationships and inform the development of strategies for integrated vector monitoring and control.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"18 1","pages":"352"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12363082/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-025-06998-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Phlebotomus (Larroussius) perniciosus (Diptera: Psychodidae) is the most common and predominant vector of Leishmania infantum in the Western Mediterranean region. Volatile organic compounds (VOCs) produced by vertebrates are important cues affecting the behaviour of blood-feeding insects. Generally, the identification of putative behaviourally active VOCs involves three distinct phases: extraction, chemical characterization and chemoreceptivity evaluation using electrophysiological techniques. Here, we present a simplified gas chromatography-mass spectrometry-electroantennographic detection (GC-MS-EAD) setup adapted for screening bioactive compounds in sand flies, in which the chemical identification and antennal responses are recorded simultaneously.
Methods: The method integrates: (i) a flow-splitter that balances the flow rate of the two outgoing streams, (ii) GC columns with different lengths and diameters in the two sections splitter-MS and splitter-EAD and (iii) an antennal signal amplifier. The GC-MS-EAD analysis was applied to headspace solid-phase microextraction (HS-SPME) extracts from a healthy dog, and antennal responses were recorded in female P. perniciosus sand flies.
Results: The canine VOC profile was predominantly composed of aldehydes, with hexanal and nonanal eliciting the strongest antennal responses in P. perniciosus.
Conclusions: This simplified GC-MS-EAD system shows promise for broader application in the study of host-vector interactions. Its use across different host-vector pairs may enhance our understanding of these relationships and inform the development of strategies for integrated vector monitoring and control.
期刊介绍:
Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish.
Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.