Kirti S Prabhu, Zahwa Mariyam, Syed A Rahman, Shilpa Kuttikrishnan, Fareed Ahmad, Ummu Habeeba, Abdul Q Khan, Afsheen Raza, Said Dermime, Salahddin A Gehani, Kulsoom Junejo, Shahab Uddin
{"title":"Targeting mTOR and Its Associated Signaling to Induce Cell Death in Breast Cancer Stem Cells.","authors":"Kirti S Prabhu, Zahwa Mariyam, Syed A Rahman, Shilpa Kuttikrishnan, Fareed Ahmad, Ummu Habeeba, Abdul Q Khan, Afsheen Raza, Said Dermime, Salahddin A Gehani, Kulsoom Junejo, Shahab Uddin","doi":"10.1002/cbin.70071","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer (BC) is a frequently diagnosed neoplasm in women and the second major cause of cancer-related deaths. Many BC patients develop metastasis and advanced tumors, increasing morbidity and mortality. There is substantial evidence that tumor relapses in BC patients are driven by a unique population of cells called cancer stem cells (CSCs). Breast CSCs confer stemness to BC and survive through the maintenance of several mechanisms, among which is the involvement of the mTOR signaling pathway. mTOR and its associated AKT signaling play a crucial role in regulating CSCsin various human cancers, including breast cancer. This study investigated the role of targeting mTOR/AKT signaling in the modulation of cell death in 2D and 3D breast cancer models. Torin-2, a dual mTOR inhibitor, effectively suppressed cell proliferation by inducing mitochondrial apoptosis. The inhibition of mTOR led to a decrease in AKT activity and downregulation of key translational machinery components, including 4EBP1, eIF4E, and p70S6K. Torin-2 treatment activated autophagy signaling in both 2D and 3D cell models. The induction of autophagy was evidenced by an increase in the autophagy protein LC3II/I in response to Torin-2 treatment. In addition, Torin-2 treatment of spheroids derived from breast cancer cells suppressed the expression of stem cell marker ALDH. Altogether, the dual inhibition of mTORC1 and mTORC2 by Torin-2 resulted in a more profound antitumor activity. This broader and more potent inhibition of the mTOR pathway contributes to effectiveness in suppressing 2D and 3D breast cancer cell growth and survival.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbin.70071","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer (BC) is a frequently diagnosed neoplasm in women and the second major cause of cancer-related deaths. Many BC patients develop metastasis and advanced tumors, increasing morbidity and mortality. There is substantial evidence that tumor relapses in BC patients are driven by a unique population of cells called cancer stem cells (CSCs). Breast CSCs confer stemness to BC and survive through the maintenance of several mechanisms, among which is the involvement of the mTOR signaling pathway. mTOR and its associated AKT signaling play a crucial role in regulating CSCsin various human cancers, including breast cancer. This study investigated the role of targeting mTOR/AKT signaling in the modulation of cell death in 2D and 3D breast cancer models. Torin-2, a dual mTOR inhibitor, effectively suppressed cell proliferation by inducing mitochondrial apoptosis. The inhibition of mTOR led to a decrease in AKT activity and downregulation of key translational machinery components, including 4EBP1, eIF4E, and p70S6K. Torin-2 treatment activated autophagy signaling in both 2D and 3D cell models. The induction of autophagy was evidenced by an increase in the autophagy protein LC3II/I in response to Torin-2 treatment. In addition, Torin-2 treatment of spheroids derived from breast cancer cells suppressed the expression of stem cell marker ALDH. Altogether, the dual inhibition of mTORC1 and mTORC2 by Torin-2 resulted in a more profound antitumor activity. This broader and more potent inhibition of the mTOR pathway contributes to effectiveness in suppressing 2D and 3D breast cancer cell growth and survival.
期刊介绍:
Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect.
These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.