{"title":"Genetic and Genomic Insights into Planarian Biology.","authors":"Longhua Guo","doi":"10.1146/annurev-genet-011725-091634","DOIUrl":null,"url":null,"abstract":"<p><p>Species such as planarians expand our horizons of imagination and fuel innovation. The ability to regenerate any tissues lost to injury has fascinated many generations of biologists studying regenerative biology. Recent experimental data have shown that regeneration in older planarians can reverse age-associated physiological decline, effectively rejuvenating the animals and making them biologically younger. The remarkable biology manifested by planarians, encompassing whole-body regeneration and rejuvenation, intersects with some of the most critical topics of twenty-first-century research, including stem cell function, lifespan regulation, and healthspan improvement, despite being viewed by some as an evolutionary oddity. Here, we discuss how advances in next-generation sequencing technologies and the advent of genomic approaches over the past two decades have revolutionized planarian research. The results of these studies have transformed our understanding of regeneration, tissue patterning, germ cell development, chromosome evolution, aging, and age reversal (rejuvenation). We anticipate that genetic and genomic tools will drive groundbreaking discoveries in the fundamental mechanisms of regeneration, aging, and rejuvenation in the coming decades.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":" ","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genet-011725-091634","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Species such as planarians expand our horizons of imagination and fuel innovation. The ability to regenerate any tissues lost to injury has fascinated many generations of biologists studying regenerative biology. Recent experimental data have shown that regeneration in older planarians can reverse age-associated physiological decline, effectively rejuvenating the animals and making them biologically younger. The remarkable biology manifested by planarians, encompassing whole-body regeneration and rejuvenation, intersects with some of the most critical topics of twenty-first-century research, including stem cell function, lifespan regulation, and healthspan improvement, despite being viewed by some as an evolutionary oddity. Here, we discuss how advances in next-generation sequencing technologies and the advent of genomic approaches over the past two decades have revolutionized planarian research. The results of these studies have transformed our understanding of regeneration, tissue patterning, germ cell development, chromosome evolution, aging, and age reversal (rejuvenation). We anticipate that genetic and genomic tools will drive groundbreaking discoveries in the fundamental mechanisms of regeneration, aging, and rejuvenation in the coming decades.
期刊介绍:
The Annual Review of Genetics, published since 1967, comprehensively covers significant advancements in genetics. It encompasses various areas such as biochemical, behavioral, cell, and developmental genetics, evolutionary and population genetics, chromosome structure and transmission, gene function and expression, mutation and repair, genomics, immunogenetics, and other topics related to the genetics of viruses, bacteria, fungi, plants, animals, and humans.