Development of Polynitrogen and Halogen-Containing Bishomocubane-Based High Energy Density Materials: Synthetic, Theoretical, and Thermogravimetric Studies
Sohan Lal, Prashanth Goud Banda, Gangavara L. Tejashree, Dilshad Javed, Neeraj Kumbhakarna, Arindrajit Chowdhury, Irishi N. N. Namboothiri
{"title":"Development of Polynitrogen and Halogen-Containing Bishomocubane-Based High Energy Density Materials: Synthetic, Theoretical, and Thermogravimetric Studies","authors":"Sohan Lal, Prashanth Goud Banda, Gangavara L. Tejashree, Dilshad Javed, Neeraj Kumbhakarna, Arindrajit Chowdhury, Irishi N. N. Namboothiri","doi":"10.1002/cplu.202500312","DOIUrl":null,"url":null,"abstract":"<p>Novel nitro, tetrazole, and halo-substituted 1,3-bishomocubanes have been successfully synthesized and characterized by various spectroscopic and analytical techniques, including single-crystal X-ray analysis. According to Density Functional Theory (DFT) calculations, performed at B3LYP/6-311++G(d, p) level of theory, the densities and heats of formation of the newly synthesized compounds are in the range of 1.52–2.26 g cm<sup>−3</sup> and −70.8–111.4 kcal mol<sup>−1</sup>, respectively. These compounds are predicted to exhibit enhanced propulsive properties in terms of density-specific impulse (ρIsp), compared to that of conventional liquid propellant RP1 and solid propellant binder hydroxy-terminated polybutadiene (HTPB), which makes them potential candidates for volume-limited propulsion systems. However, two derivatives have exceptional calculated figures of merit for volume-limited propulsion systems, a dibromoester (ρIsp 415.8 s), and a dibromonitroalcohol (ρIsp 421.3 s). Though its detonation properties indicate low explosive potential, the dibromonitroalcohol possesses the highest detonation pressure (20.1 GPa) and velocity (6.3 Km s<sup>−1</sup>), which are closer to the detonation performance of trinitrotoluene (TNT). Stability parameters, including Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) energy gaps, thermogravimetric analysis, and differential thermal analysis, confirm the robust kinetic and thermal stability of our compounds.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":"90 10","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cplu.202500312","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Novel nitro, tetrazole, and halo-substituted 1,3-bishomocubanes have been successfully synthesized and characterized by various spectroscopic and analytical techniques, including single-crystal X-ray analysis. According to Density Functional Theory (DFT) calculations, performed at B3LYP/6-311++G(d, p) level of theory, the densities and heats of formation of the newly synthesized compounds are in the range of 1.52–2.26 g cm−3 and −70.8–111.4 kcal mol−1, respectively. These compounds are predicted to exhibit enhanced propulsive properties in terms of density-specific impulse (ρIsp), compared to that of conventional liquid propellant RP1 and solid propellant binder hydroxy-terminated polybutadiene (HTPB), which makes them potential candidates for volume-limited propulsion systems. However, two derivatives have exceptional calculated figures of merit for volume-limited propulsion systems, a dibromoester (ρIsp 415.8 s), and a dibromonitroalcohol (ρIsp 421.3 s). Though its detonation properties indicate low explosive potential, the dibromonitroalcohol possesses the highest detonation pressure (20.1 GPa) and velocity (6.3 Km s−1), which are closer to the detonation performance of trinitrotoluene (TNT). Stability parameters, including Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) energy gaps, thermogravimetric analysis, and differential thermal analysis, confirm the robust kinetic and thermal stability of our compounds.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.