Enhancing Spinal Metastasis Detection and Feature Evaluation on Computed Tomography Scans Using Deep-Learning Systems

IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS
Zhiyu Wang, Guangyu Yao, Shengyuan Xu, Yifeng Gu, Yujie Chang, Jing Sun, Jingyi Guo, Shiqi Peng, Bolin Lai, Xiaoyun Zhang, Chunbin Wang, Haiying Jiang, Surong Chen, Yanfeng Wang, Ya Zhang, Yuehua Li, Hui Zhao
{"title":"Enhancing Spinal Metastasis Detection and Feature Evaluation on Computed Tomography Scans Using Deep-Learning Systems","authors":"Zhiyu Wang,&nbsp;Guangyu Yao,&nbsp;Shengyuan Xu,&nbsp;Yifeng Gu,&nbsp;Yujie Chang,&nbsp;Jing Sun,&nbsp;Jingyi Guo,&nbsp;Shiqi Peng,&nbsp;Bolin Lai,&nbsp;Xiaoyun Zhang,&nbsp;Chunbin Wang,&nbsp;Haiying Jiang,&nbsp;Surong Chen,&nbsp;Yanfeng Wang,&nbsp;Ya Zhang,&nbsp;Yuehua Li,&nbsp;Hui Zhao","doi":"10.1002/aisy.202400956","DOIUrl":null,"url":null,"abstract":"<p>Spinal metastases can result in pathological fractures, which reduce survival time and quality of life. Physician experience significantly influences the detection of spinal metastases and the evaluation of associated features. This study aims to develop a deep-learning system (DLS) for automatic detection of spinal metastasis and feature evaluation using computed tomography and to determine the impact of the DLS on physician performance in the detection and assessment of spinal metastasis. DLS assistance in a multireader, multicase test study results in higher sensitivity and specificity in spinal metastasis detection and feature evaluation (all <i>p</i> &lt; 0.001). Additionally, resident physicians show a more significant improvement in sensitivity and specificity compared with attending or chief physicians in spinal metastasis detection and most feature evaluation (<i>p</i> &lt; 0.01). In a cohort test study, resident oncologists assisted by the DLS achieve significantly higher sensitivity and specificity compared with those without assistance (all <i>p</i> &lt; 0.01), except for the sensitivity of vertebral body collapse evaluation (<i>p </i>&gt; 0.01). DLS assistance may improve physicians’ performance in the detection and evaluation of spinal metastases, particularly that of resident oncologists.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 8","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400956","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aisy.202400956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal metastases can result in pathological fractures, which reduce survival time and quality of life. Physician experience significantly influences the detection of spinal metastases and the evaluation of associated features. This study aims to develop a deep-learning system (DLS) for automatic detection of spinal metastasis and feature evaluation using computed tomography and to determine the impact of the DLS on physician performance in the detection and assessment of spinal metastasis. DLS assistance in a multireader, multicase test study results in higher sensitivity and specificity in spinal metastasis detection and feature evaluation (all p < 0.001). Additionally, resident physicians show a more significant improvement in sensitivity and specificity compared with attending or chief physicians in spinal metastasis detection and most feature evaluation (p < 0.01). In a cohort test study, resident oncologists assisted by the DLS achieve significantly higher sensitivity and specificity compared with those without assistance (all p < 0.01), except for the sensitivity of vertebral body collapse evaluation (p > 0.01). DLS assistance may improve physicians’ performance in the detection and evaluation of spinal metastases, particularly that of resident oncologists.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

利用深度学习系统增强计算机断层扫描的脊柱转移检测和特征评估
脊柱转移可导致病理性骨折,降低生存时间和生活质量。医师经验显著影响脊柱转移的检测和相关特征的评估。本研究旨在开发一个深度学习系统(DLS),用于计算机断层扫描对脊柱转移的自动检测和特征评估,并确定DLS对医生在脊柱转移检测和评估中的表现的影响。DLS在多读卡器、多病例试验研究中的辅助研究结果表明,在脊柱转移检测和特征评估方面具有更高的敏感性和特异性(均p <; 0.001)。此外,住院医师在脊柱转移检测和大多数特征评估方面的敏感性和特异性比主治医师或主任医师有更显著的提高(p < 0.01)。在一项队列试验研究中,除了椎体塌陷评估的敏感性(p < 0.01)外,DLS辅助下的住院肿瘤学家的敏感性和特异性明显高于无辅助的住院肿瘤学家(p < 0.01)。DLS辅助可以提高医生在脊柱转移的检测和评估方面的表现,特别是住院肿瘤学家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信