{"title":"Interfacial Coordination Induced Crystalline Metallacyclic Membrane for High-Performance Enantioseparation","authors":"Run-Hao Li, Yumei Wang, Yi Liu, Yue Sun","doi":"10.1002/agt2.70095","DOIUrl":null,"url":null,"abstract":"<p>Membranes offer an attractive route to efficient enantioseparation, especially compared with energy-intensive techniques like chromatography. However, tuning membrane structure and porosity to separate chiral molecules remains challenging. Here, we present a process for producing intrinsically chiral, ordered discrete metallacycycle <b>1</b> membranes on polyacrylonitrile supports through interfacial coordination-driven self-assembly using organic precursor <b>2</b> and metallic precursor <b>3</b>. These chiral membranes, with their orientated architecture, exhibit ultra-high enantioselectivity (up to 100%) and permeation efficiency for racemic 1-phenylethanol, 1-phenylethylamine, and 2-phenylglycinol. Thermodynamic data and molecular simulations revealed the retarded transport mechanism of the membrane, resulting in highly efficient enantioseparation. Notably, when integrated into a circuit-controlled 3D-printed module, the aligned metallacyclic membrane retained its enantioselectivity for high-value pharmaceutical racemic salbutamol. This approach provides a feasible strategy for creating supramolecular metallacyclic channels in chiral membranes, demonstrating the potential for accurate enantioseparations.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"6 8","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70095","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.70095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Membranes offer an attractive route to efficient enantioseparation, especially compared with energy-intensive techniques like chromatography. However, tuning membrane structure and porosity to separate chiral molecules remains challenging. Here, we present a process for producing intrinsically chiral, ordered discrete metallacycycle 1 membranes on polyacrylonitrile supports through interfacial coordination-driven self-assembly using organic precursor 2 and metallic precursor 3. These chiral membranes, with their orientated architecture, exhibit ultra-high enantioselectivity (up to 100%) and permeation efficiency for racemic 1-phenylethanol, 1-phenylethylamine, and 2-phenylglycinol. Thermodynamic data and molecular simulations revealed the retarded transport mechanism of the membrane, resulting in highly efficient enantioseparation. Notably, when integrated into a circuit-controlled 3D-printed module, the aligned metallacyclic membrane retained its enantioselectivity for high-value pharmaceutical racemic salbutamol. This approach provides a feasible strategy for creating supramolecular metallacyclic channels in chiral membranes, demonstrating the potential for accurate enantioseparations.