Patricia Kubo Fontes, Ana Beatriz Florencio da Silva, Ana Beatriz dos Reis Bartoli, Thays Antunes, Arnaldo Rodrigues dos Santos Júnior, Marcella Pecora Milazzotto
{"title":"Three-Dimensional Magnetic Bioprinting Spheroids as an In Vitro Model to Study the Oviductal Physiology","authors":"Patricia Kubo Fontes, Ana Beatriz Florencio da Silva, Ana Beatriz dos Reis Bartoli, Thays Antunes, Arnaldo Rodrigues dos Santos Júnior, Marcella Pecora Milazzotto","doi":"10.1002/mrd.70049","DOIUrl":null,"url":null,"abstract":"<p>In vitro models to study the oviduct are challenged by cellular dedifferentiation, a complex coculture system for embryo production, limited cell lifespan, and/or very complex methodologies. Hence, we aimed to develop an in vitro oviductal model using the magnetic bioprinting system, a three-dimensional (3D) culture system. Using the bovine epithelial and stromal oviductal cells (BOEC and BOSC, respectively), we produced the Oviductal Magnetic Spheroid (OMS), a duo somatic cell spheroid aggregate with self-organization capacity. The OMS showed to be viable for 21 days and recapitulated the oviductal tissue features after 7 days in culture, such as a simple epithelial cell layer facing outwards, expressing ciliation (acetylated tubulin positive) and secretory marker (oviduct-specific glycoprotein 1). Although the responsiveness for hormonal treatment with estradiol and progesterone in an estrous cycle-dependent way might require further improvements, the OMS offers an ethical and practical alternative as a three-dimensional oviductal in vitro model to study oviductal physiology, and maybe, a future platform to test therapies and a technology aiming to improve fertility and assisted reproduction success.</p>","PeriodicalId":18856,"journal":{"name":"Molecular Reproduction and Development","volume":"92 8","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrd.70049","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Reproduction and Development","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrd.70049","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In vitro models to study the oviduct are challenged by cellular dedifferentiation, a complex coculture system for embryo production, limited cell lifespan, and/or very complex methodologies. Hence, we aimed to develop an in vitro oviductal model using the magnetic bioprinting system, a three-dimensional (3D) culture system. Using the bovine epithelial and stromal oviductal cells (BOEC and BOSC, respectively), we produced the Oviductal Magnetic Spheroid (OMS), a duo somatic cell spheroid aggregate with self-organization capacity. The OMS showed to be viable for 21 days and recapitulated the oviductal tissue features after 7 days in culture, such as a simple epithelial cell layer facing outwards, expressing ciliation (acetylated tubulin positive) and secretory marker (oviduct-specific glycoprotein 1). Although the responsiveness for hormonal treatment with estradiol and progesterone in an estrous cycle-dependent way might require further improvements, the OMS offers an ethical and practical alternative as a three-dimensional oviductal in vitro model to study oviductal physiology, and maybe, a future platform to test therapies and a technology aiming to improve fertility and assisted reproduction success.
期刊介绍:
Molecular Reproduction and Development takes an integrated, systems-biology approach to understand the dynamic continuum of cellular, reproductive, and developmental processes. This journal fosters dialogue among diverse disciplines through primary research communications and educational forums, with the philosophy that fundamental findings within the life sciences result from a convergence of disciplines.
Increasingly, readers of the Journal need to be informed of diverse, yet integrated, topics impinging on their areas of interest. This requires an expansion in thinking towards non-traditional, interdisciplinary experimental design and data analysis.