SimLiquid: A Simulation-Based Liquid Perception Pipeline for Robot Liquid Manipulation

IF 5.2 2区 计算机科学 Q2 ROBOTICS
Yan Huang, Jiawei Zhang, Ran Yu, Shoujie Li, Wenbo Ding
{"title":"SimLiquid: A Simulation-Based Liquid Perception Pipeline for Robot Liquid Manipulation","authors":"Yan Huang,&nbsp;Jiawei Zhang,&nbsp;Ran Yu,&nbsp;Shoujie Li,&nbsp;Wenbo Ding","doi":"10.1002/rob.22548","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Transparent liquid volume estimation is crucial for robot manipulation tasks, such as pouring. However, estimating the volume of transparent liquids is a challenging problem. Most existing methods primarily focus on data collection in the real world, and the sensors are fixed to the robot body for liquid volume estimation. These approaches limit both the timeliness of the research process and the flexibility of perception. In this paper, we present SimLiquid20k, a high-fidelity synthetic data set for liquid volume estimation, and propose a YOLO-based multi-task network trained on fully synthetic data for estimating the volume of transparent liquids. Extensive experiments demonstrate that our method can effectively transfer from simulation to the real world. In scenarios involving changes in background, viewpoint, and container variations, our approach achieves an average error of 5% in real-world volume estimation. In addition, our work conducts two application experiments integrating with GPT-4, showcasing the potential of our method in service robotics. The accompanying videos and supporting Information are available at https://simliquid.github.io/.</p>\n </div>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"42 6","pages":"2908-2919"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22548","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Transparent liquid volume estimation is crucial for robot manipulation tasks, such as pouring. However, estimating the volume of transparent liquids is a challenging problem. Most existing methods primarily focus on data collection in the real world, and the sensors are fixed to the robot body for liquid volume estimation. These approaches limit both the timeliness of the research process and the flexibility of perception. In this paper, we present SimLiquid20k, a high-fidelity synthetic data set for liquid volume estimation, and propose a YOLO-based multi-task network trained on fully synthetic data for estimating the volume of transparent liquids. Extensive experiments demonstrate that our method can effectively transfer from simulation to the real world. In scenarios involving changes in background, viewpoint, and container variations, our approach achieves an average error of 5% in real-world volume estimation. In addition, our work conducts two application experiments integrating with GPT-4, showcasing the potential of our method in service robotics. The accompanying videos and supporting Information are available at https://simliquid.github.io/.

SimLiquid:一种基于仿真的机器人液体操作的液体感知管道
透明液体的体积估算是机器人操作任务的关键,如浇注。然而,估计透明液体的体积是一个具有挑战性的问题。大多数现有的方法主要集中在真实世界的数据收集,并且传感器固定在机器人体内进行液体体积估计。这些方法限制了研究过程的及时性和感知的灵活性。在本文中,我们提出了一个用于液体体积估计的高保真合成数据集SimLiquid20k,并提出了一个基于yolo的多任务网络,该网络在完全合成的数据上训练,用于估计透明液体的体积。大量的实验表明,我们的方法可以有效地从仿真转移到现实世界。在涉及背景、视点和容器变化的场景中,我们的方法在实际体积估计中实现了5%的平均误差。此外,我们的工作还进行了两次与GPT-4集成的应用实验,展示了我们的方法在服务机器人领域的潜力。随附的视频和辅助信息可在https://simliquid.github.io/上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信