Ultrathin (<10 nm) Electrochemical Random-Access Memory that Overcomes the Tradeoff between Robust Weight Update and Speed in Neuromorphic Systems

IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS
Seonuk Jeon, Seokjae Lim, Nir Tessler, Jiyong Woo
{"title":"Ultrathin (<10 nm) Electrochemical Random-Access Memory that Overcomes the Tradeoff between Robust Weight Update and Speed in Neuromorphic Systems","authors":"Seonuk Jeon,&nbsp;Seokjae Lim,&nbsp;Nir Tessler,&nbsp;Jiyong Woo","doi":"10.1002/aisy.202500416","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical random-access memory (ECRAM) devices are a promising candidate for neuromorphic computing, as they mimic synaptic functions by modulating conductance through ion migration. However, the use of a thick electrolyte layer (&gt;40 nm) in conventional ECRAMs leads to an unavoidable tradeoff between synaptic weight updates and operating speed. To address this problem, a Cu-based ultrathin ECRAM (UT-ECRAM) that uses a single 5 nm HfO<sub><i><b>x</b></i></sub> active layer and a ≈1.2 nm AlO<sub><i>x</i></sub> liner is designed. The highly efficient gate-tunable fast Cu-ion transport in the AlO<sub><i>x</i></sub>/HfO<sub><i>x</i></sub> UT-ECRAM enables 1) near-ideal linearity in weight updates (0.45) even achieved with a pulse width (<i>t</i><sub>w</sub>) of 50 μs, 2) dynamic multilevel retention of 10<sup>4</sup> s, and 3) reliable cycling endurance of 10<sup>4</sup> cycles. A numerical analysis based on device scaling quantitatively reveals that a relatively high concentration of field-driven Cu ions (≈10<sup>20</sup> cm<sup>−3</sup>) contributes to each synaptic weight update per gate voltage (<i>V</i><sub>G</sub>) pulse in the UT-ECRAM without becoming deactivated by traversing thicker layers. This improved gate sensitivity can ultimately overcome the linearity and the ratio/speed tradeoff relationships, paving the way for robust neuromorphic synaptic units.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 8","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202500416","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aisy.202500416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical random-access memory (ECRAM) devices are a promising candidate for neuromorphic computing, as they mimic synaptic functions by modulating conductance through ion migration. However, the use of a thick electrolyte layer (>40 nm) in conventional ECRAMs leads to an unavoidable tradeoff between synaptic weight updates and operating speed. To address this problem, a Cu-based ultrathin ECRAM (UT-ECRAM) that uses a single 5 nm HfOx active layer and a ≈1.2 nm AlOx liner is designed. The highly efficient gate-tunable fast Cu-ion transport in the AlOx/HfOx UT-ECRAM enables 1) near-ideal linearity in weight updates (0.45) even achieved with a pulse width (tw) of 50 μs, 2) dynamic multilevel retention of 104 s, and 3) reliable cycling endurance of 104 cycles. A numerical analysis based on device scaling quantitatively reveals that a relatively high concentration of field-driven Cu ions (≈1020 cm−3) contributes to each synaptic weight update per gate voltage (VG) pulse in the UT-ECRAM without becoming deactivated by traversing thicker layers. This improved gate sensitivity can ultimately overcome the linearity and the ratio/speed tradeoff relationships, paving the way for robust neuromorphic synaptic units.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

超薄(< 10nm)电化学随机存取存储器克服了神经形态系统中鲁棒权重更新和速度之间的权衡
电化学随机存取存储器(ECRAM)设备是神经形态计算的一个很有前途的候选者,因为它们通过离子迁移调节电导来模拟突触功能。然而,在传统ecram中使用厚电解质层(40 nm)会导致突触重量更新和操作速度之间不可避免的权衡。为了解决这个问题,设计了一种基于cu的超薄ECRAM (UT-ECRAM),该ECRAM使用单个5nm的HfOx有源层和≈1.2 nm的AlOx衬里。AlOx/HfOx utecram中高效的栅极可调快速cu离子输运实现了1)即使在脉冲宽度(tw)为50 μs的情况下,重量更新的线性度也接近理想(0.45),2)104 s的动态多电平保持,3)104周期的可靠循环持久时间。基于器件尺度的数值分析表明,相对高浓度的场驱动Cu离子(≈1020 cm−3)有助于UT-ECRAM中每个栅极电压(VG)脉冲的突触权重更新,而不会因穿越较厚的层而失效。这种改进的门灵敏度最终可以克服线性和比率/速度权衡关系,为鲁棒神经形态突触单元铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信