Utilization of Non-Metallic Inclusion to Induce Intragranular Acicular Ferrite Formation Contributing to “Oxide Metallurgy”: Effect of Ti/Al Content on the Microstructure Evolution
IF 2.5 3区 材料科学Q2 METALLURGY & METALLURGICAL ENGINEERING
{"title":"Utilization of Non-Metallic Inclusion to Induce Intragranular Acicular Ferrite Formation Contributing to “Oxide Metallurgy”: Effect of Ti/Al Content on the Microstructure Evolution","authors":"Chen Cai, Wangzhong Mu","doi":"10.1002/srin.202400360","DOIUrl":null,"url":null,"abstract":"<p>Non-metallic inclusion is generally aimed to be removed during the refining process of steel production. The steelmakers always intend to produce clean steel to optimize the final product properties. However, the fine size inclusion is hard to remove completely; alternatively, it could be served as the nucleation site to induce the formation of intragranular acicular ferrite (IAF). This is an optimal microstructure with the “interlock” morphology and has been reported to be able to improve mechanical property, e.g., low-temperature impact toughness, according to the concept of “oxide metallurgy.” In this work, the low-alloy steels with different amounts of Ti and Al contents are prepared, and the inclusion characteristics (i.e., composition, size, distribution, etc.) are quantitatively investigated. Furthermore, high-temperature confocal laser scanning microscopy is applied to observe the IAF formation in situ with controlled isothermal holding and cooling conditions. The effect of nature of inclusions on IAF formation is investigated in the proposed steels. Subsequently, the theoretical model according to classical nucleation theory is utilized to evaluate the capability of different kinds of inclusions to induce IAF. Last but not least, the microstructure features in different steels are also investigated.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"96 8","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/srin.202400360","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400360","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Non-metallic inclusion is generally aimed to be removed during the refining process of steel production. The steelmakers always intend to produce clean steel to optimize the final product properties. However, the fine size inclusion is hard to remove completely; alternatively, it could be served as the nucleation site to induce the formation of intragranular acicular ferrite (IAF). This is an optimal microstructure with the “interlock” morphology and has been reported to be able to improve mechanical property, e.g., low-temperature impact toughness, according to the concept of “oxide metallurgy.” In this work, the low-alloy steels with different amounts of Ti and Al contents are prepared, and the inclusion characteristics (i.e., composition, size, distribution, etc.) are quantitatively investigated. Furthermore, high-temperature confocal laser scanning microscopy is applied to observe the IAF formation in situ with controlled isothermal holding and cooling conditions. The effect of nature of inclusions on IAF formation is investigated in the proposed steels. Subsequently, the theoretical model according to classical nucleation theory is utilized to evaluate the capability of different kinds of inclusions to induce IAF. Last but not least, the microstructure features in different steels are also investigated.
期刊介绍:
steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags.
steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International.
Hot Topics:
-Steels for Automotive Applications
-High-strength Steels
-Sustainable steelmaking
-Interstitially Alloyed Steels
-Electromagnetic Processing of Metals
-High Speed Forming