Ülo Mander, Jaan Pärn, Mikk Espenberg, Josep Peñuelas
{"title":"Human-Impacted Natural Ecosystems Drive Climate Warming","authors":"Ülo Mander, Jaan Pärn, Mikk Espenberg, Josep Peñuelas","doi":"10.1111/gcb.70449","DOIUrl":null,"url":null,"abstract":"<p>Current greenhouse gas budgets do not account for most indirect anthropogenic impacts. In this perspective, we call for attention to greenhouse gas fluxes from human-impacted natural ecosystems and their mitigation measures. The article highlights the increasing greenhouse gas (GHG) emissions from natural ecosystems, including CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O. These emissions are becoming significant drivers of global warming, surpassing those from fossil fuel combustion. We introduce the concept of “anthro-natural emissions” on the example of peatlands, referring to emissions from natural ecosystems indirectly impacted by human activities. The concept helps bridge the gap between natural and anthropogenic impacts, providing a more comprehensive understanding of GHG emissions. Anthro-natural emissions are expected to rise as climate warming progresses, contributing to the overall GHG balance. Peatlands, which store approximately 30% of the world's soil carbon, are under increasing pressure from climate warming and human activities. The article emphasizes the importance of addressing both natural and human-impacted ecosystems to mitigate climate change effectively. Increasingly frequent droughts are identified as a major threat to global terrestrial ecosystems, particularly wetlands. The drying of wetlands challenges their capacity to act as carbon sinks and alters their roles in climate regulation. The insights provided are essential for developing effective adaptation strategies relying on soil carbon sequestration as a long-term solution against climate warming. According to our study, the proportion of natural, anthro-natural, and directly disturbed peatlands is approximately 40–20–40, and the ratio is increasing towards anthro-natural peatlands. We highlight a change of paradigm for assessing the importance of different GHG sources. Further, it highlights the need for conservation and restoration of peatlands and renaturalization of forest ecosystems.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 8","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70449","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70449","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Current greenhouse gas budgets do not account for most indirect anthropogenic impacts. In this perspective, we call for attention to greenhouse gas fluxes from human-impacted natural ecosystems and their mitigation measures. The article highlights the increasing greenhouse gas (GHG) emissions from natural ecosystems, including CO2, CH4, and N2O. These emissions are becoming significant drivers of global warming, surpassing those from fossil fuel combustion. We introduce the concept of “anthro-natural emissions” on the example of peatlands, referring to emissions from natural ecosystems indirectly impacted by human activities. The concept helps bridge the gap between natural and anthropogenic impacts, providing a more comprehensive understanding of GHG emissions. Anthro-natural emissions are expected to rise as climate warming progresses, contributing to the overall GHG balance. Peatlands, which store approximately 30% of the world's soil carbon, are under increasing pressure from climate warming and human activities. The article emphasizes the importance of addressing both natural and human-impacted ecosystems to mitigate climate change effectively. Increasingly frequent droughts are identified as a major threat to global terrestrial ecosystems, particularly wetlands. The drying of wetlands challenges their capacity to act as carbon sinks and alters their roles in climate regulation. The insights provided are essential for developing effective adaptation strategies relying on soil carbon sequestration as a long-term solution against climate warming. According to our study, the proportion of natural, anthro-natural, and directly disturbed peatlands is approximately 40–20–40, and the ratio is increasing towards anthro-natural peatlands. We highlight a change of paradigm for assessing the importance of different GHG sources. Further, it highlights the need for conservation and restoration of peatlands and renaturalization of forest ecosystems.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.