Letícia Terumi Kito, Angélica Galvão Santos Silva, Caroline Machado Andrade Ramos, Diego Morais da Silva, Evelyn Alves Nunes Simonetti, Dayane Batista Tada, Tiago Moreira Bastos Campos, Gilmar Patrocínio Thim
{"title":"Effects of the Addition of Aminosilane-Functionalized Titanate Nanotubes in Carboxymethylcellulose-Based Film for Biomedical Applications","authors":"Letícia Terumi Kito, Angélica Galvão Santos Silva, Caroline Machado Andrade Ramos, Diego Morais da Silva, Evelyn Alves Nunes Simonetti, Dayane Batista Tada, Tiago Moreira Bastos Campos, Gilmar Patrocínio Thim","doi":"10.1002/jbm.b.35644","DOIUrl":null,"url":null,"abstract":"<p>Skin injuries occur when cellular integrity is compromised due to mechanical, physical, or metabolic factors. This study reported on a carboxymethylcellulose (CMC)-based film incorporating TiNT, aiming at its application as a wound dressing. As a minimally invasive approach, titanate nanotubes (TiNT) have been studied due to their photocatalytic properties, biocompatibility, large pore volume, and high surface area. Functionalization with aminosilane groups, using the biological responses of nitrogen, has been explored to enhance cellular interaction. Upon exposure to UV radiation, the dressing releases nanotubes, protecting the lesion from external pathogens and promoting healing. TiNTs were synthesized via a hydrothermal method and 0.2% (v/v) functionalized using 3-aminopropyltrimethoxysilane (APTMS). The films were prepared with 1 (wt%) TiNT or TiNT_NH2 in a 2 (wt%) CMC solution and dried at 60°C for 24 h. Results showed enhanced thermal stability and the potential for controlled nanoparticle release under UV light, with no cytotoxic effects observed. The films demonstrated excellent biocompatibility, making them promising candidates for medical applications.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 9","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35644","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35644","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Skin injuries occur when cellular integrity is compromised due to mechanical, physical, or metabolic factors. This study reported on a carboxymethylcellulose (CMC)-based film incorporating TiNT, aiming at its application as a wound dressing. As a minimally invasive approach, titanate nanotubes (TiNT) have been studied due to their photocatalytic properties, biocompatibility, large pore volume, and high surface area. Functionalization with aminosilane groups, using the biological responses of nitrogen, has been explored to enhance cellular interaction. Upon exposure to UV radiation, the dressing releases nanotubes, protecting the lesion from external pathogens and promoting healing. TiNTs were synthesized via a hydrothermal method and 0.2% (v/v) functionalized using 3-aminopropyltrimethoxysilane (APTMS). The films were prepared with 1 (wt%) TiNT or TiNT_NH2 in a 2 (wt%) CMC solution and dried at 60°C for 24 h. Results showed enhanced thermal stability and the potential for controlled nanoparticle release under UV light, with no cytotoxic effects observed. The films demonstrated excellent biocompatibility, making them promising candidates for medical applications.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.