Classification of Pulmonary Nodules Using Multimodal Feature-Driven Graph Convolutional Networks with Specificity Proficiency

IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS
Renjie Xu, Zhanlue Liang, Dan Wang, Rui Zhang, Jiayi Li, Lingfeng Bi, Kai Zhang, Weimin Li
{"title":"Classification of Pulmonary Nodules Using Multimodal Feature-Driven Graph Convolutional Networks with Specificity Proficiency","authors":"Renjie Xu,&nbsp;Zhanlue Liang,&nbsp;Dan Wang,&nbsp;Rui Zhang,&nbsp;Jiayi Li,&nbsp;Lingfeng Bi,&nbsp;Kai Zhang,&nbsp;Weimin Li","doi":"10.1002/aisy.202400874","DOIUrl":null,"url":null,"abstract":"<p>Graph neural networks could compare the difference among all samples (nodes in graph) and transmit the interrelationship among them to obtain a global landscape. Compared with radiomics and clinical feature-based machine learning methods, whether a graph convolutional neural network (GCNN) based on radiomics and clinical features improve the performance in distinguishing benign and malignant pulmonary nodules is not well studied. We propose an approach based on multimodal GCNNs that integrates patients’ lung computed tomography images with clinical information to differentiate between benign and malignant pulmonary nodules. Leveraging large-scale and multisource data from multiple hospitals (i.e., 6033/290/524 patients for three hospitals respectively) enhances the diversity of features. Accuracy, sensitivity, specificity, precision, and area under the receiver operating characteristic curve (AUROC) are used to evaluate the performance. We achieved the average accuracy/sensitivity/specificity/AUROC of 0.8612/0.9425/0.6786/0.9025 for the main dataset via the novel GCNN proposed, respectively, maintaining the robustness of the deep learning procedures. Especially for the external testing dataset (hospital 2/hospital 3), the specificity is much higher than comparison methods (0.6250–0.6731 vs. 0.2569–0.2788). The graph neural network-based deep learning method holds the potential to assist clinicians, aiding in treatment planning, patient management, follow-up strategies, resource optimization, and overall healthcare decision-making.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 8","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400874","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aisy.202400874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Graph neural networks could compare the difference among all samples (nodes in graph) and transmit the interrelationship among them to obtain a global landscape. Compared with radiomics and clinical feature-based machine learning methods, whether a graph convolutional neural network (GCNN) based on radiomics and clinical features improve the performance in distinguishing benign and malignant pulmonary nodules is not well studied. We propose an approach based on multimodal GCNNs that integrates patients’ lung computed tomography images with clinical information to differentiate between benign and malignant pulmonary nodules. Leveraging large-scale and multisource data from multiple hospitals (i.e., 6033/290/524 patients for three hospitals respectively) enhances the diversity of features. Accuracy, sensitivity, specificity, precision, and area under the receiver operating characteristic curve (AUROC) are used to evaluate the performance. We achieved the average accuracy/sensitivity/specificity/AUROC of 0.8612/0.9425/0.6786/0.9025 for the main dataset via the novel GCNN proposed, respectively, maintaining the robustness of the deep learning procedures. Especially for the external testing dataset (hospital 2/hospital 3), the specificity is much higher than comparison methods (0.6250–0.6731 vs. 0.2569–0.2788). The graph neural network-based deep learning method holds the potential to assist clinicians, aiding in treatment planning, patient management, follow-up strategies, resource optimization, and overall healthcare decision-making.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

基于多模态特征驱动图卷积网络的肺结节分类
图神经网络可以比较所有样本(图中的节点)之间的差异,并传递它们之间的相互关系,从而获得全局景观。与放射组学和基于临床特征的机器学习方法相比,基于放射组学和临床特征的图卷积神经网络(GCNN)是否提高了肺结节良恶性区分的性能尚未得到很好的研究。我们提出了一种基于多模态gcnn的方法,该方法将患者肺部计算机断层图像与临床信息相结合,以区分肺结节的良恶性。利用多家医院的大规模、多源数据(即三家医院分别为6033/290/524名患者),增强了特征的多样性。准确度、灵敏度、特异度、精密度和受试者工作特征曲线下面积(AUROC)被用来评价其性能。在保持深度学习过程鲁棒性的前提下,通过本文提出的新型GCNN,主数据集的平均准确率/灵敏度/特异性/AUROC分别为0.8612/0.9425/0.6786/0.9025。特别是对于外部测试数据集(医院2/医院3),特异性远高于比较方法(0.6250-0.6731 vs. 0.2569-0.2788)。基于图神经网络的深度学习方法具有帮助临床医生的潜力,有助于治疗计划、患者管理、后续策略、资源优化和整体医疗保健决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信