Multi-Disease Detection in Retinal Imaging Using VNet with Image Processing Methods for Data Generation

IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS
Samad Azimi Abriz, Mansoor Fateh, Fatemeh Jafarinejad, Vahid Abolghasemi
{"title":"Multi-Disease Detection in Retinal Imaging Using VNet with Image Processing Methods for Data Generation","authors":"Samad Azimi Abriz,&nbsp;Mansoor Fateh,&nbsp;Fatemeh Jafarinejad,&nbsp;Vahid Abolghasemi","doi":"10.1002/aisy.202401039","DOIUrl":null,"url":null,"abstract":"<p>Deep learning faces challenges like limited data, vanishing gradients, high parameter counts, and long training times. This article addresses two key issues: 1) data scarcity in ophthalmology and 2) vanishing gradients in deep networks. To overcome data limitations, an image processing-based data generation method is proposed, expanding the dataset size by 12x. This approach enhances model training and prevents overfitting. For vanishing gradients, a deep neural network is introduced with optimized weight updates in initial layers, enabling the use of more and deeper layers. The proposed methods are validated using the retinal fundus multi-disease image database dataset, a limited and imbalanced ophthalmology dataset available on the Grand Challenge website. Results show a 10% improvement in model accuracy compared to the original dataset and a 5% improvement over the benchmark reported on the website.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 8","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202401039","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aisy.202401039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning faces challenges like limited data, vanishing gradients, high parameter counts, and long training times. This article addresses two key issues: 1) data scarcity in ophthalmology and 2) vanishing gradients in deep networks. To overcome data limitations, an image processing-based data generation method is proposed, expanding the dataset size by 12x. This approach enhances model training and prevents overfitting. For vanishing gradients, a deep neural network is introduced with optimized weight updates in initial layers, enabling the use of more and deeper layers. The proposed methods are validated using the retinal fundus multi-disease image database dataset, a limited and imbalanced ophthalmology dataset available on the Grand Challenge website. Results show a 10% improvement in model accuracy compared to the original dataset and a 5% improvement over the benchmark reported on the website.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

基于VNet的视网膜成像多疾病检测与图像处理方法的数据生成
深度学习面临着数据有限、梯度消失、高参数计数和长训练时间等挑战。本文解决了两个关键问题:1)眼科学中的数据稀缺性和2)深度网络中的梯度消失。为了克服数据的局限性,提出了一种基于图像处理的数据生成方法,将数据集大小扩大了12倍。这种方法增强了模型训练并防止了过拟合。为了消除梯度,在初始层引入深度神经网络,优化权重更新,从而可以使用更多更深的层。使用视网膜眼底多疾病图像数据库数据集(Grand Challenge网站上提供的有限且不平衡的眼科数据集)验证了所提出的方法。结果显示,与原始数据集相比,模型精度提高了10%,比网站上报告的基准提高了5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信