Solid-Phase Upcycling Toward the Production of Ultrahigh-Loading Single-Atom Catalysts

IF 13.7 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guanwu Lian, Zefan Du, Yifan Wang, Yelan Xiao, Mengyao Su, Chao Wu, Yucong Huang, Yuansheng Lin, Jingjing Xiong, Yichen Chen, Shibo Xi, Wenguang Tu, Zhigang Zou, Zhongxin Chen
{"title":"Solid-Phase Upcycling Toward the Production of Ultrahigh-Loading Single-Atom Catalysts","authors":"Guanwu Lian,&nbsp;Zefan Du,&nbsp;Yifan Wang,&nbsp;Yelan Xiao,&nbsp;Mengyao Su,&nbsp;Chao Wu,&nbsp;Yucong Huang,&nbsp;Yuansheng Lin,&nbsp;Jingjing Xiong,&nbsp;Yichen Chen,&nbsp;Shibo Xi,&nbsp;Wenguang Tu,&nbsp;Zhigang Zou,&nbsp;Zhongxin Chen","doi":"10.1002/agt2.70052","DOIUrl":null,"url":null,"abstract":"<p>The recovery of valuable transition metals from deactivated catalysts is crucial for alleviating the challenges of resource scarcity and environmental pollution. Guided by AI-powered big data analysis, we identified an important research gap in the sustainable recovery of early transition metals and proposed a solid-phase upcycling strategy to transform waste catalysts into highly valuable single-atom catalysts (SACs). This involves a heat-induced redispersion of metal aggregates into single atoms on the polycrystalline carbon nitride (PCN) support, producing highly active M<sub>1</sub>-PCN SACs up to 20 wt% (M = Cu, Fe, Co, and Ni). Subsequent techno-economic analysis confirms a two-thirds reduction in production cost and greenhouse gas emissions compared to conventional hydrometallurgical and pyrometallurgical processes, thus paving a new path in the development of sustainable technologies for metal recovery.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"6 8","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70052","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.70052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The recovery of valuable transition metals from deactivated catalysts is crucial for alleviating the challenges of resource scarcity and environmental pollution. Guided by AI-powered big data analysis, we identified an important research gap in the sustainable recovery of early transition metals and proposed a solid-phase upcycling strategy to transform waste catalysts into highly valuable single-atom catalysts (SACs). This involves a heat-induced redispersion of metal aggregates into single atoms on the polycrystalline carbon nitride (PCN) support, producing highly active M1-PCN SACs up to 20 wt% (M = Cu, Fe, Co, and Ni). Subsequent techno-economic analysis confirms a two-thirds reduction in production cost and greenhouse gas emissions compared to conventional hydrometallurgical and pyrometallurgical processes, thus paving a new path in the development of sustainable technologies for metal recovery.

Abstract Image

固相升级循环制备超高负载单原子催化剂
从失活催化剂中回收有价值的过渡金属对于缓解资源短缺和环境污染的挑战至关重要。在人工智能驱动的大数据分析的指导下,我们发现了早期过渡金属可持续回收的重要研究空白,并提出了将废弃催化剂转化为高价值单原子催化剂(SACs)的固相升级回收策略。这涉及到金属聚集体在多晶碳氮(PCN)载体上的热诱导再分散成单原子,产生高达20% wt%的高活性M1-PCN SACs (M = Cu, Fe, Co和Ni)。随后的技术经济分析证实,与传统的湿法冶金和火法冶金工艺相比,生产成本和温室气体排放降低了三分之二,从而为可持续金属回收技术的发展铺平了新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信