Optimal Trajectory Generation of Various English Alphabets Using Deep Learning Model for 3-R Manipulator

IF 5.2 2区 计算机科学 Q2 ROBOTICS
Swapnil Murai, Rahul Das Vairagi, Vijay Bhaskar Semwal
{"title":"Optimal Trajectory Generation of Various English Alphabets Using Deep Learning Model for 3-R Manipulator","authors":"Swapnil Murai,&nbsp;Rahul Das Vairagi,&nbsp;Vijay Bhaskar Semwal","doi":"10.1002/rob.22537","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The modern era of medicine and industry extensively utilizes the manipulator's hand for a variety of vital automated activities. Handling a manipulator hand is a complex task. Due to the nonlinear characteristics of inverse kinematics (IK) mathematical model, inverse kinematics is a time-consuming and laborious procedure, making it difficult to provide a mathematical solution. This research employs a 3-R (revolute) robotic manipulator to achieve joint trajectories for drawing different alphabets and shapes. The IK problem has been solved using a hybrid model. The model is a hybrid of an artificial neural network (ANN) based model, the forward and backward reaching inverse kinematics (FABRIK) technique provides stability and the control barrier function (CBF) with the Lyapunov function. Using the proposed model, coordinates for different alphabets and shapes within the confined workspace were calculated. The ANN automatically obtains specific end-effector coordinates. This model combines the CBF with the Lyapunov function to ensure that a safe region is selected. The accuracy of the model exceeds 99.5%. We have calculated the mean square error (MSE) as 1.66, the root mean square error (RMSE) as 1.25, and the mean absolute error (MAE) as 0.96 for our model. The error between the model's predicted and actual coordinates also demonstrates letter coordinates and shapes drawn using a physical 3R manipulator model. As a result, this method can be applied to precisely estimate the angles in intricate 3DoF inverse kinematics models.</p>\n </div>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"42 6","pages":"2639-2655"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22537","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The modern era of medicine and industry extensively utilizes the manipulator's hand for a variety of vital automated activities. Handling a manipulator hand is a complex task. Due to the nonlinear characteristics of inverse kinematics (IK) mathematical model, inverse kinematics is a time-consuming and laborious procedure, making it difficult to provide a mathematical solution. This research employs a 3-R (revolute) robotic manipulator to achieve joint trajectories for drawing different alphabets and shapes. The IK problem has been solved using a hybrid model. The model is a hybrid of an artificial neural network (ANN) based model, the forward and backward reaching inverse kinematics (FABRIK) technique provides stability and the control barrier function (CBF) with the Lyapunov function. Using the proposed model, coordinates for different alphabets and shapes within the confined workspace were calculated. The ANN automatically obtains specific end-effector coordinates. This model combines the CBF with the Lyapunov function to ensure that a safe region is selected. The accuracy of the model exceeds 99.5%. We have calculated the mean square error (MSE) as 1.66, the root mean square error (RMSE) as 1.25, and the mean absolute error (MAE) as 0.96 for our model. The error between the model's predicted and actual coordinates also demonstrates letter coordinates and shapes drawn using a physical 3R manipulator model. As a result, this method can be applied to precisely estimate the angles in intricate 3DoF inverse kinematics models.

基于深度学习模型的3-R机械臂各种英文字母最优轨迹生成
现代医学和工业广泛利用机械手的手进行各种重要的自动化活动。操纵机械手是一项复杂的任务。由于逆运动学(IK)数学模型的非线性特性,逆运动学是一个费时费力的过程,很难给出数学解。本研究采用3-R(旋转)机械手实现关节轨迹,绘制不同的字母和形状。使用混合模型解决了IK问题。该模型是一种基于人工神经网络(ANN)的混合模型,正、后向逼近逆运动学(FABRIK)技术提供了稳定性,控制障碍函数(CBF)具有Lyapunov函数。利用所提出的模型,计算了有限工作空间内不同字母和形状的坐标。人工神经网络自动获取特定的末端执行器坐标。该模型将CBF与Lyapunov函数相结合,以确保安全区域的选择。该模型的准确率超过99.5%。我们计算出我们模型的均方误差(MSE)为1.66,均方根误差(RMSE)为1.25,平均绝对误差(MAE)为0.96。模型的预测坐标与实际坐标之间的误差也证明了使用物理3R机械手模型绘制的字母坐标和形状。结果表明,该方法可用于复杂的三维自由度逆运动学模型中角度的精确估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信