Wideband Near-Field Microwave Imaging With Optimal Standoff Using a Metasurface-Enhanced Printed Dipole Antenna

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Soumya Chakravarty;Anwesha Khasnobish;M. Jaleel Akhtar
{"title":"Wideband Near-Field Microwave Imaging With Optimal Standoff Using a Metasurface-Enhanced Printed Dipole Antenna","authors":"Soumya Chakravarty;Anwesha Khasnobish;M. Jaleel Akhtar","doi":"10.1109/LSENS.2025.3596310","DOIUrl":null,"url":null,"abstract":"Near-field microwave imaging is vital for biomedical applications requiring noninvasive subsurface anomaly detection. This study introduces a novel 3 GHz printed dipole antenna integrated with a phase gradient metasurface reflectarray and a multilayer metasurface lens, enhancing the overall directivity of the proposed antenna structure for microwave imaging. A key innovation in the imaging methodology here involves the systematic identification of an optimal spacing of the antenna structure from the target region in the near field, which substantially improves the anomaly localization in the imaging domain. Experimental results using clay phantoms demonstrate successful detection of both low-reflectivity (air pocket) and high-reflectivity (water) anomalies. The proposed scheme combines background subtraction and ±1-σ one-sided percentile-based thresholding for accurate imaging and validates the metasurface-enhanced antenna system's robustness and adaptability for biomedical near-field imaging.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 9","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11119004/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Near-field microwave imaging is vital for biomedical applications requiring noninvasive subsurface anomaly detection. This study introduces a novel 3 GHz printed dipole antenna integrated with a phase gradient metasurface reflectarray and a multilayer metasurface lens, enhancing the overall directivity of the proposed antenna structure for microwave imaging. A key innovation in the imaging methodology here involves the systematic identification of an optimal spacing of the antenna structure from the target region in the near field, which substantially improves the anomaly localization in the imaging domain. Experimental results using clay phantoms demonstrate successful detection of both low-reflectivity (air pocket) and high-reflectivity (water) anomalies. The proposed scheme combines background subtraction and ±1-σ one-sided percentile-based thresholding for accurate imaging and validates the metasurface-enhanced antenna system's robustness and adaptability for biomedical near-field imaging.
基于超表面增强印刷偶极子天线的最佳距离宽带近场微波成像
近场微波成像对于需要非侵入性地下异常检测的生物医学应用至关重要。本文介绍了一种新型的3 GHz印刷偶极子天线,该天线集成了相位梯度超表面反射天线和多层超表面透镜,增强了所提出的微波成像天线结构的整体指向性。该成像方法的一个关键创新在于系统地识别天线结构与近场目标区域的最佳间距,从而大大提高了成像域的异常定位。实验结果表明,利用粘土模型可以成功地探测到低反射率(气穴)和高反射率(水)异常。该方案结合背景减法和±1-σ单侧百分位数阈值法实现了精确成像,验证了超表面增强天线系统对生物医学近场成像的鲁棒性和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信