Paired (n−1)-to-(n−1) disjoint path covers in bipartite transposition-like graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Anna Coleman , Gabrielle Fischberg , Charles Gong , Joshua Harrington , Tony W.H. Wong
{"title":"Paired (n−1)-to-(n−1) disjoint path covers in bipartite transposition-like graphs","authors":"Anna Coleman ,&nbsp;Gabrielle Fischberg ,&nbsp;Charles Gong ,&nbsp;Joshua Harrington ,&nbsp;Tony W.H. Wong","doi":"10.1016/j.dam.2025.07.038","DOIUrl":null,"url":null,"abstract":"<div><div>A paired <span><math><mi>k</mi></math></span>-to-<span><math><mi>k</mi></math></span> disjoint path cover of a graph <span><math><mi>G</mi></math></span> is a collection of pairwise disjoint path subgraphs <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> such that each <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> has prescribed vertices <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> as endpoints and the union of <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> contains all vertices of <span><math><mi>G</mi></math></span>. In this paper, we introduce bipartite transposition-like graphs, which are inductively constructed from lower ranked bipartite transposition-like graphs. We show that every rank <span><math><mi>n</mi></math></span> bipartite transposition-like graph <span><math><mi>G</mi></math></span> admit a paired <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-to-<span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span> disjoint path cover for all choices of <span><math><mrow><mi>S</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow></mrow></math></span> and <span><math><mrow><mi>T</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow></mrow></math></span>, provided that <span><math><mi>S</mi></math></span> is in one partite set of <span><math><mi>G</mi></math></span> and <span><math><mi>T</mi></math></span> is in the other.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"376 ","pages":"Pages 449-461"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004299","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A paired k-to-k disjoint path cover of a graph G is a collection of pairwise disjoint path subgraphs P1,P2,,Pk such that each Pi has prescribed vertices si and ti as endpoints and the union of P1,P2,,Pk contains all vertices of G. In this paper, we introduce bipartite transposition-like graphs, which are inductively constructed from lower ranked bipartite transposition-like graphs. We show that every rank n bipartite transposition-like graph G admit a paired (n1)-to-(n1) disjoint path cover for all choices of S={s1,s2,,sn1} and T={t1,t2,,tn1}, provided that S is in one partite set of G and T is in the other.
类二部转置图的成对(n−1)到-(n−1)不相交路径覆盖
图G的一对k到k不相交的路径覆盖是一对不相交的子图P1,P2,…,Pk的集合,使得每个Pi都有规定的顶点si和ti作为端点,并且P1,P2,…,Pk的并集包含G的所有顶点。本文引入了由低阶二部类转置图归纳构造的类二部转置图。我们证明了对于S={s1,s2,…,sn−1}和T={t1,t2,…,tn−1}的所有选择,只要S在G的一个部集中,T在另一个部集中,每个n阶类二部转置图G都存在一对(n−1)到-(n−1)不相交的路径覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信