Joint optimization algorithm for continuous/discrete phase beamforming in active Reconfigurable Intelligent Surfaces

IF 3.2 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Qianqian Zhang, Zhengjiang Han, Folong Cao, Erfu Wang
{"title":"Joint optimization algorithm for continuous/discrete phase beamforming in active Reconfigurable Intelligent Surfaces","authors":"Qianqian Zhang,&nbsp;Zhengjiang Han,&nbsp;Folong Cao,&nbsp;Erfu Wang","doi":"10.1016/j.aeue.2025.155996","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a unified optimization framework for both continuous and discrete phase configurations of active Reconfigurable Intelligent Surfaces (RIS) phases method is proposed. An adaptive temperature simulated annealing algorithm optimize the phase of the active RIS reflections. Joint optimization of base station (BS) beamforming and active RIS elements is achieved through alternating iterations to maximize the quality of the signal at the user’s end, while accounting for active RIS noise. Simulations verify the proposed scheme’s applicability to both continuous and discrete phase systems. Furthermore, it is demonstrated that 4-bit discrete-phase quantization is comparable to continuous-phase signal enhancement.</div></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"201 ","pages":"Article 155996"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841125003371","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a unified optimization framework for both continuous and discrete phase configurations of active Reconfigurable Intelligent Surfaces (RIS) phases method is proposed. An adaptive temperature simulated annealing algorithm optimize the phase of the active RIS reflections. Joint optimization of base station (BS) beamforming and active RIS elements is achieved through alternating iterations to maximize the quality of the signal at the user’s end, while accounting for active RIS noise. Simulations verify the proposed scheme’s applicability to both continuous and discrete phase systems. Furthermore, it is demonstrated that 4-bit discrete-phase quantization is comparable to continuous-phase signal enhancement.
主动可重构智能曲面连续/离散相位波束形成联合优化算法
本文提出了主动可重构智能曲面(RIS)相位法连续和离散相位构型的统一优化框架。采用自适应温度模拟退火算法对RIS主动反射相位进行优化。通过交替迭代实现基站(BS)波束形成和有源RIS单元的联合优化,在考虑有源RIS噪声的同时,最大限度地提高用户端的信号质量。仿真验证了该方法对连续相和离散相系统的适用性。此外,还证明了4位离散相位量化可与连续相位信号增强相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
18.80%
发文量
292
审稿时长
4.9 months
期刊介绍: AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including: signal and system theory, digital signal processing network theory and circuit design information theory, communication theory and techniques, modulation, source and channel coding switching theory and techniques, communication protocols optical communications microwave theory and techniques, radar, sonar antennas, wave propagation AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信