Perspective on artificial intelligence for carbon capture utilization and storage (CCUS) in Petrochemical Industry

Jin Ma , Yide Han , Meihong Wang , Weimin Zhong , Wenli Du , Feng Qian
{"title":"Perspective on artificial intelligence for carbon capture utilization and storage (CCUS) in Petrochemical Industry","authors":"Jin Ma ,&nbsp;Yide Han ,&nbsp;Meihong Wang ,&nbsp;Weimin Zhong ,&nbsp;Wenli Du ,&nbsp;Feng Qian","doi":"10.1016/j.ccst.2025.100471","DOIUrl":null,"url":null,"abstract":"<div><div>The energy-intensive petrochemical industry contributes 14 % of global industrial emissions. In the face of climate change, there is an urgent need for the petrochemical industry transition to low carbon manufacturing. Deployment of carbon capture, utilization and storage (CCUS) technologies can effectively reduce carbon emissions from the petrochemical industry. However, the large-scale deployment of CCUS faces the obstacles of high energy consumption and high cost. Artificial intelligence (AI) has shown great potential to accelerate the large-scale deployment of CCUS in the petrochemical industry. Nevertheless, most AI-based approaches are still largely at the research stage and not yet widely adopted in industrial practice. This paper explores four aspects of AI for petrochemical industry to reduce CO<sub>2</sub> emission, including the solvent selection and design for carbon capture, catalyst design for CO<sub>2</sub> utilisation, hybrid process modelling for optimal design and operation, and life cycle sustainability assessment. We evaluate different promising approaches for AI in each aspect and highlight our key findings, with the goal to accelerate the petrochemical industry transition to carbon neutrality.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"16 ","pages":"Article 100471"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825001101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The energy-intensive petrochemical industry contributes 14 % of global industrial emissions. In the face of climate change, there is an urgent need for the petrochemical industry transition to low carbon manufacturing. Deployment of carbon capture, utilization and storage (CCUS) technologies can effectively reduce carbon emissions from the petrochemical industry. However, the large-scale deployment of CCUS faces the obstacles of high energy consumption and high cost. Artificial intelligence (AI) has shown great potential to accelerate the large-scale deployment of CCUS in the petrochemical industry. Nevertheless, most AI-based approaches are still largely at the research stage and not yet widely adopted in industrial practice. This paper explores four aspects of AI for petrochemical industry to reduce CO2 emission, including the solvent selection and design for carbon capture, catalyst design for CO2 utilisation, hybrid process modelling for optimal design and operation, and life cycle sustainability assessment. We evaluate different promising approaches for AI in each aspect and highlight our key findings, with the goal to accelerate the petrochemical industry transition to carbon neutrality.
人工智能在石油化工碳捕集利用与封存中的应用展望
能源密集型的石化工业占全球工业排放的14%。面对气候变化,石化行业迫切需要向低碳制造转型。碳捕集、利用和封存(CCUS)技术的部署可以有效地减少石化行业的碳排放。然而,CCUS的大规模部署面临着高能耗和高成本的障碍。人工智能(AI)在加速CCUS在石化行业的大规模部署方面显示出巨大的潜力。然而,大多数基于人工智能的方法在很大程度上仍处于研究阶段,尚未在工业实践中广泛采用。本文探讨了人工智能在石化行业减少二氧化碳排放方面的四个方面,包括用于碳捕集的溶剂选择和设计、用于二氧化碳利用的催化剂设计、用于优化设计和运行的混合过程建模以及生命周期可持续性评估。我们在每个方面评估了人工智能的不同有前途的方法,并强调了我们的主要发现,目标是加速石化行业向碳中和的过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信