Enhancing xanthan biosynthesis in aerobic granular sludge for resource recovery: The role of organic loading rate, carbon-to-nitrogen ratio, and feeding strategy

Manveer Kaur , Rebecca N. Vesuwe , André Bezerra dos Santos , Kalindi D. Morgan , Oliver Terna Iorhemen
{"title":"Enhancing xanthan biosynthesis in aerobic granular sludge for resource recovery: The role of organic loading rate, carbon-to-nitrogen ratio, and feeding strategy","authors":"Manveer Kaur ,&nbsp;Rebecca N. Vesuwe ,&nbsp;André Bezerra dos Santos ,&nbsp;Kalindi D. Morgan ,&nbsp;Oliver Terna Iorhemen","doi":"10.1016/j.clwat.2025.100111","DOIUrl":null,"url":null,"abstract":"<div><div>Recovering high-value biopolymers from wastewater offers a sustainable strategy for both pollution control and resource generation. This study is the first to examine xanthan biosynthesis and recovery in aerobic granular sludge (AGS) wastewater treatment systems, providing an alternative to conventional carbohydrate-rich fermentation, which is energy-intensive, feedstock-dependent, and costly. Valorizing xanthan from wastewater supports circular economy principles and integrated water–resource management. The effects of organic loading rate (OLR), carbon-to-nitrogen ratio (C/N), and feeding strategy on xanthan yield were assessed in nine experimental runs treating synthetic wastewater. AGS performance remained stable under all conditions, with excellent settling (5-min sludge volume index &lt; 40 mL/g) and high COD removal (95 ± 5 %). Ammonia-nitrogen and phosphorus removals averaged 73 ± 23 %, and 72 ± 18 %, respectively. Maximum xanthan yields occurred at OLR = 2.1 kg COD/m³ ∙d and C/N = 10 (41 ± 7 mg/g biomass, run 3) and at OLR = 2.1 kg COD/m³ ∙d and C/N = 20 (35 ± 10 mg/g biomass, run 1). Pearson correlation analysis showed a strong positive relationship between OLR and xanthan yield (r = 0.831, p = 0.006), and a moderate, non-significant negative correlation with C/N (r = –0.512, p = 0.158). Feeding strategy showed minimal influence (r = 0.042, p = 0.915). Fourier transform infrared and proton nuclear magnetic resonance spectroscopies confirmed structural similarity between recovered and commercial xanthan gum. These results demonstrate that AGS can be engineered to recover xanthan while maintaining high treatment performance, advancing sustainable wastewater management, biopolymer production, and circular economy objectives.</div></div>","PeriodicalId":100257,"journal":{"name":"Cleaner Water","volume":"4 ","pages":"Article 100111"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Water","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950263225000493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recovering high-value biopolymers from wastewater offers a sustainable strategy for both pollution control and resource generation. This study is the first to examine xanthan biosynthesis and recovery in aerobic granular sludge (AGS) wastewater treatment systems, providing an alternative to conventional carbohydrate-rich fermentation, which is energy-intensive, feedstock-dependent, and costly. Valorizing xanthan from wastewater supports circular economy principles and integrated water–resource management. The effects of organic loading rate (OLR), carbon-to-nitrogen ratio (C/N), and feeding strategy on xanthan yield were assessed in nine experimental runs treating synthetic wastewater. AGS performance remained stable under all conditions, with excellent settling (5-min sludge volume index < 40 mL/g) and high COD removal (95 ± 5 %). Ammonia-nitrogen and phosphorus removals averaged 73 ± 23 %, and 72 ± 18 %, respectively. Maximum xanthan yields occurred at OLR = 2.1 kg COD/m³ ∙d and C/N = 10 (41 ± 7 mg/g biomass, run 3) and at OLR = 2.1 kg COD/m³ ∙d and C/N = 20 (35 ± 10 mg/g biomass, run 1). Pearson correlation analysis showed a strong positive relationship between OLR and xanthan yield (r = 0.831, p = 0.006), and a moderate, non-significant negative correlation with C/N (r = –0.512, p = 0.158). Feeding strategy showed minimal influence (r = 0.042, p = 0.915). Fourier transform infrared and proton nuclear magnetic resonance spectroscopies confirmed structural similarity between recovered and commercial xanthan gum. These results demonstrate that AGS can be engineered to recover xanthan while maintaining high treatment performance, advancing sustainable wastewater management, biopolymer production, and circular economy objectives.
加强好氧颗粒污泥中黄原胶的生物合成以实现资源回收:有机负荷率、碳氮比和饲养策略的作用
从废水中回收高价值的生物聚合物为污染控制和资源生成提供了一种可持续的策略。本研究首次研究了好氧颗粒污泥(AGS)废水处理系统中黄原胶的生物合成和回收,为传统的富含碳水化合物的发酵提供了一种替代方案,这种发酵是能源密集型的,依赖于原料,而且成本高昂。从废水中再生黄原胶支持循环经济原则和综合水资源管理。通过9次处理合成废水的试验,考察了有机负荷率(OLR)、碳氮比(C/N)和投料策略对黄原胶产量的影响。在所有条件下,AGS的性能都保持稳定,沉降良好(5 min污泥体积指数<; 40 mL/g), COD去除率高(95 ± 5 %)。氨氮和磷的平均去除率分别为73 ± 23 %和72 ± 18 %。最大黄原胶产量发生在OLR 公斤2.1 = 鳕鱼/ m³ ∙d和C / N = 10(41 ± 7 毫克/克生物质,运行3)和OLR =  公斤2.1鳕鱼/ m³ ∙d和C / N = 20(35 ±  10毫克/克生物量、运行1)。Pearson相关分析显示,OLR与黄原胶产量呈正相关(r = 0.831,p = 0.006),与C/N呈中度负相关(r = -0.512,p = 0.158)。饲喂策略影响最小(r = 0.042,p = 0.915)。傅里叶变换红外光谱和质子核磁共振光谱证实了回收的黄原胶与商业黄原胶的结构相似性。这些结果表明,AGS可以在保持高处理性能的同时回收黄原胶,促进可持续废水管理、生物聚合物生产和循环经济目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信