Chaitra Shree V. , Sahana T.S. , Raveesh R.M. , Sowjanya G.V.
{"title":"Behaviour of Masonry Walls Under Combined Compression and Shear Loading: 3D Failure Analysis","authors":"Chaitra Shree V. , Sahana T.S. , Raveesh R.M. , Sowjanya G.V.","doi":"10.1016/j.prostr.2025.07.027","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the nonlinear behaviour and failure mechanisms of masonry infill walls subjected to combined axial compression and lateral shear loading. Using the Drucker-Prager plasticity model within ANSYS Workbench, a 3D finite element model of a reinforced concrete (RC) frame with masonry infill was developed. The simulation focused on crack initiation, propagation, and ultimate load-bearing capacity. Results revealed initial stiffness due to confinement, followed by diagonal shear cracking as the dominant failure mode. The finite element analysis showed good agreement with analytical estimations, with a deviation of only ±6% in peak shear capacity. Contour plots of equivalent plastic strain and stress trajectories highlighted the development of tension-induced cracks and residual strength, emphasizing the role of RC confinement. The study validates the Drucker-Prager model for simulating pressure-sensitive masonry behaviour and offers insights into stress redistribution and damage evolution under complex loading. These findings contribute to performance-based design, retrofitting strategies, and structural assessments of masonry-infilled frames under seismic or lateral forces. Future work may incorporate cyclic or probabilistic modelling for enhanced accuracy in real-world applications.</div></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":"70 ","pages":"Pages 67-73"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452321625002574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the nonlinear behaviour and failure mechanisms of masonry infill walls subjected to combined axial compression and lateral shear loading. Using the Drucker-Prager plasticity model within ANSYS Workbench, a 3D finite element model of a reinforced concrete (RC) frame with masonry infill was developed. The simulation focused on crack initiation, propagation, and ultimate load-bearing capacity. Results revealed initial stiffness due to confinement, followed by diagonal shear cracking as the dominant failure mode. The finite element analysis showed good agreement with analytical estimations, with a deviation of only ±6% in peak shear capacity. Contour plots of equivalent plastic strain and stress trajectories highlighted the development of tension-induced cracks and residual strength, emphasizing the role of RC confinement. The study validates the Drucker-Prager model for simulating pressure-sensitive masonry behaviour and offers insights into stress redistribution and damage evolution under complex loading. These findings contribute to performance-based design, retrofitting strategies, and structural assessments of masonry-infilled frames under seismic or lateral forces. Future work may incorporate cyclic or probabilistic modelling for enhanced accuracy in real-world applications.