Kirkendall Effect-Driven Interface Engineering Facilitates Water Dissociation for Dual-Site H2O2 Electrosynthesis Simultaneously at the Anode and Cathode

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xin-Hao Cai, Lu Peng, Ping Zhu, Peng-Hui Liu, Yuan-Chu Qin, Zi-Bo Jing, Hao-Jie Zhu, Cheng-Cheng Huang, Jung-Hyun Son, Ju-Won Lee, Yan-Lin Chen, Prof. Wen-Long Wang, Prof. Qian-Yuan Wu
{"title":"Kirkendall Effect-Driven Interface Engineering Facilitates Water Dissociation for Dual-Site H2O2 Electrosynthesis Simultaneously at the Anode and Cathode","authors":"Xin-Hao Cai,&nbsp;Lu Peng,&nbsp;Ping Zhu,&nbsp;Peng-Hui Liu,&nbsp;Yuan-Chu Qin,&nbsp;Zi-Bo Jing,&nbsp;Hao-Jie Zhu,&nbsp;Cheng-Cheng Huang,&nbsp;Jung-Hyun Son,&nbsp;Ju-Won Lee,&nbsp;Yan-Lin Chen,&nbsp;Prof. Wen-Long Wang,&nbsp;Prof. Qian-Yuan Wu","doi":"10.1002/anie.202512046","DOIUrl":null,"url":null,"abstract":"<p>The direct integration of renewable energy into H<sub>2</sub>O<sub>2</sub> electrosynthesis systems offers a promising strategy to minimize energy losses and costs. Due to the intermittency of renewable energy, the dual-site catalysts must efficiently enable both the two-electron oxygen reduction reaction (2e<sup>−</sup> ORR) and water oxidation reaction (2e<sup>−</sup> WOR). The Kirkendall effect was employed to engineer interfaces and construct a NiZnO<sub>x</sub>─C catalyst with exposed (100) facets. The hetero-cluster NiO<sub>x</sub> induces oxygen vacancies and built-in electric fields, which facilitate water activation and subsequent formation of hydrogen and hydroxyl radicals, thereby enabling a single catalyst to rapidly electrosynthesize H<sub>2</sub>O<sub>2</sub> at both the anode and cathode. Notably, 2e<sup>−</sup> ORR on the cathode enabled rapid synthesis of high-concentration H<sub>2</sub>O<sub>2</sub> (33987 mg L<sup>−1</sup>, 33.18 mol g<sub>catalyst</sub><sup>−1</sup> h<sup>−1</sup>). NiZnO<sub>x</sub>─C achieves stable 2e<sup>−</sup> ORR/WOR coupling in a continuous-flow reactor, operating reliably for 4 h under simulated alternating current (AC) and peaking at a total Faradaic efficiency of 150.9% under amperage-level direct currents. This work provides insights into interface engineering based on the Kirkendall effect, demonstrating the feasibility of directly integrating intermittent renewable energy into H<sub>2</sub>O<sub>2</sub> electrosynthesis systems.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 41","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202512046","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The direct integration of renewable energy into H2O2 electrosynthesis systems offers a promising strategy to minimize energy losses and costs. Due to the intermittency of renewable energy, the dual-site catalysts must efficiently enable both the two-electron oxygen reduction reaction (2e ORR) and water oxidation reaction (2e WOR). The Kirkendall effect was employed to engineer interfaces and construct a NiZnOx─C catalyst with exposed (100) facets. The hetero-cluster NiOx induces oxygen vacancies and built-in electric fields, which facilitate water activation and subsequent formation of hydrogen and hydroxyl radicals, thereby enabling a single catalyst to rapidly electrosynthesize H2O2 at both the anode and cathode. Notably, 2e ORR on the cathode enabled rapid synthesis of high-concentration H2O2 (33987 mg L−1, 33.18 mol gcatalyst−1 h−1). NiZnOx─C achieves stable 2e ORR/WOR coupling in a continuous-flow reactor, operating reliably for 4 h under simulated alternating current (AC) and peaking at a total Faradaic efficiency of 150.9% under amperage-level direct currents. This work provides insights into interface engineering based on the Kirkendall effect, demonstrating the feasibility of directly integrating intermittent renewable energy into H2O2 electrosynthesis systems.

Abstract Image

Kirkendall效应驱动的界面工程促进了双点H2O2电合成的水解离同时在阳极和阴极。
将可再生能源直接集成到H2O2电合成系统中,可以最大限度地减少能量损失和成本。由于可再生能源的间断性,双址催化剂必须同时高效地实现双电子氧还原反应(2e- ORR)和水氧化反应(2e- WOR)。利用Kirkendall效应来设计界面,并构建了具有暴露(100)面的NiZnOx─C催化剂。异质团簇NiOx诱导氧空位和内置电场,促进水活化和随后氢自由基和羟基自由基的形成,从而使单一催化剂能够在阳极和阴极快速电合成H2O2。值得注意的是,阴极上的2e- ORR可以快速合成高浓度H2O2 (33987 mg L-1, 33.18 mol gcatalyst -1 h-1)。NiZnOx─C在连续流反应器中实现了稳定的2e- ORR/WOR耦合,在模拟交流(AC)下可靠运行4小时,在安培级直流下总法拉第效率达到150.9%。这项工作为基于Kirkendall效应的界面工程提供了见解,证明了将间歇性可再生能源直接集成到H2O2电合成系统中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信