Engineering Anion-Diluent Matrix for Ion-Decoupled Localized High-Concentration Electrolytes toward Highly Stable Aqueous Zinc Ion Batteries

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chenyue Huang, Ming Zhao, Chong Xu, Yanqun Lv, Mingzhe Fang, Qianwen Dong, Yunkai Xu, Zheng Bo, Jun Lu
{"title":"Engineering Anion-Diluent Matrix for Ion-Decoupled Localized High-Concentration Electrolytes toward Highly Stable Aqueous Zinc Ion Batteries","authors":"Chenyue Huang,&nbsp;Ming Zhao,&nbsp;Chong Xu,&nbsp;Yanqun Lv,&nbsp;Mingzhe Fang,&nbsp;Qianwen Dong,&nbsp;Yunkai Xu,&nbsp;Zheng Bo,&nbsp;Jun Lu","doi":"10.1002/anie.202511410","DOIUrl":null,"url":null,"abstract":"<p>Aqueous zinc-ion batteries suffer from electrolyte-induced degradation despite their inherent safety advantages. While localized high-concentration electrolytes (LHCEs) mitigate interfacial instability, the excessive cation–anion association elevate ionic transport barriers, resulting in sluggish migration kinetics. Herein, ion-decoupled LHCE (ID-LHCE) are proposed using amphiphilic 2,2,3,3-tetrafluoro-1-propanol (TFP) as anion-affinity diluent. The TFP-mediated anion-diluent matrix (ADM) liberates anion OTF<sup>−</sup> from Zn<sup>2+</sup> solvation sheaths, which maintains Zn<sup>2+</sup>-enriched nanodomains while significantly reducing ionic transport barriers with an elevated Zn<sup>2+</sup> transference number of 0.72. ADM decouples aqueous networks into biphasic H<sub>2</sub>O-rich/poor nanodomains, establishing a localized environment with attenuated water activity that suppresses hydrogen evolution reaction. Concurrently generated water-deficient interfaces and dehydrated OTF<sup>−</sup> coordination environment synergistically facilitate the construction of dense gradient heterogeneous SEI: an inner ZnF<sub>2</sub>-ZnS inorganic layer and an outer oligomer layer, enabling dendrite-free zinc deposition with ultralong cyclability (3,000 h at 1 mA cm<sup>−2</sup>) and 99.88% coulombic efficiency. Full cells paired with NaV<sub>3</sub>O<sub>8</sub>·1.5H<sub>2</sub>O cathodes retain 72.5% capacity retention after 2,000 cycles at 0.5 A g<sup>−1</sup>. Practical viability is demonstrated by the stable operation of high mass loading ampere-hour-level pouch cells (1.04 Ah). By correlating molecular interactions, nanoscale phase separation, and macroscopic ion migration, this work establishes a multiscale design paradigm for electrolyte nanostructure.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 40","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202511410","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc-ion batteries suffer from electrolyte-induced degradation despite their inherent safety advantages. While localized high-concentration electrolytes (LHCEs) mitigate interfacial instability, the excessive cation–anion association elevate ionic transport barriers, resulting in sluggish migration kinetics. Herein, ion-decoupled LHCE (ID-LHCE) are proposed using amphiphilic 2,2,3,3-tetrafluoro-1-propanol (TFP) as anion-affinity diluent. The TFP-mediated anion-diluent matrix (ADM) liberates anion OTF from Zn2+ solvation sheaths, which maintains Zn2+-enriched nanodomains while significantly reducing ionic transport barriers with an elevated Zn2+ transference number of 0.72. ADM decouples aqueous networks into biphasic H2O-rich/poor nanodomains, establishing a localized environment with attenuated water activity that suppresses hydrogen evolution reaction. Concurrently generated water-deficient interfaces and dehydrated OTF coordination environment synergistically facilitate the construction of dense gradient heterogeneous SEI: an inner ZnF2-ZnS inorganic layer and an outer oligomer layer, enabling dendrite-free zinc deposition with ultralong cyclability (3,000 h at 1 mA cm−2) and 99.88% coulombic efficiency. Full cells paired with NaV3O8·1.5H2O cathodes retain 72.5% capacity retention after 2,000 cycles at 0.5 A g−1. Practical viability is demonstrated by the stable operation of high mass loading ampere-hour-level pouch cells (1.04 Ah). By correlating molecular interactions, nanoscale phase separation, and macroscopic ion migration, this work establishes a multiscale design paradigm for electrolyte nanostructure.

Abstract Image

用于高稳定性锌离子水溶液电池的离子去耦局部高浓度电解质的工程阴离子稀释基质。
水溶液锌离子电池尽管具有固有的安全性优势,但仍存在电解质诱导降解的问题。虽然局部高浓度电解质(LHCEs)减轻了界面的不稳定性,但过量的阳离子-阴离子结合会提高离子传输屏障,导致迁移动力学缓慢。本文采用两亲性的2,2,3,3-四氟-1-丙醇(TFP)作为阴离子亲和稀释剂,提出了离子去耦LHCE (ID-LHCE)。tfp介导的阴离子稀释基质(ADM)从Zn2+溶剂化鞘中释放出阴离子OTF-,维持了Zn2+富集的纳米结构域,同时显著降低了离子传输屏障,Zn2+转移数提高了0.72。ADM将水网络解耦为富/贫两相纳米结构域,建立了一个局部环境,水活性减弱,抑制析氢反应。同时生成的缺水界面和脱水的OTF-配位环境协同促进了致密梯度非均质SEI的构建:内部是ZnF2-ZnS无机层,外部是低聚物层,使得无枝晶锌沉积具有超长循环性(1 mA cm-2下3,000 h)和99.88%的库仑效率。与NaV3O8·1.5H2O阴极配对的满电池在0.5 A g-1下循环2000次后保持72.5%的容量保持率。实际可行性证明了高质量负载安培小时水平袋电池(1.04 Ah)的稳定运行。通过将分子相互作用、纳米级相分离和宏观离子迁移联系起来,本研究建立了电解质纳米结构的多尺度设计范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信