Analyzing clinical laboratory data outcomes in retrospective cohort studies using TriNetX.

IF 1.8
Biochemia medica Pub Date : 2025-10-15 Epub Date: 2025-08-15 DOI:10.11613/BM.2025.030502
Joshua Wang, Kuo-Wang Tsai, Chien-Lin Lu, Kuo-Cheng Lu
{"title":"Analyzing clinical laboratory data outcomes in retrospective cohort studies using TriNetX.","authors":"Joshua Wang, Kuo-Wang Tsai, Chien-Lin Lu, Kuo-Cheng Lu","doi":"10.11613/BM.2025.030502","DOIUrl":null,"url":null,"abstract":"<p><p>TriNetX, a rapidly growing global network of anonymized patient data, enables clinical researchers to perform large-scale retrospective cohort studies. However, its functionality for querying laboratory data outcomes is significantly constrained, as it only provides the results of the most recent test within a specified observation period. Consequently, the platform is not optimized for analyzing laboratory data collected at multiple time points during an observation period. This paper introduces innovative, data-informed solutions to address these limitations, offering practical guidance for researchers aiming to leverage TriNetX for examining clinical laboratory data.</p>","PeriodicalId":94370,"journal":{"name":"Biochemia medica","volume":"35 3","pages":"030502"},"PeriodicalIF":1.8000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334939/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemia medica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11613/BM.2025.030502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

TriNetX, a rapidly growing global network of anonymized patient data, enables clinical researchers to perform large-scale retrospective cohort studies. However, its functionality for querying laboratory data outcomes is significantly constrained, as it only provides the results of the most recent test within a specified observation period. Consequently, the platform is not optimized for analyzing laboratory data collected at multiple time points during an observation period. This paper introduces innovative, data-informed solutions to address these limitations, offering practical guidance for researchers aiming to leverage TriNetX for examining clinical laboratory data.

使用TriNetX分析回顾性队列研究的临床实验室数据结果。
TriNetX是一个快速发展的匿名患者数据全球网络,使临床研究人员能够进行大规模回顾性队列研究。然而,它查询实验室数据结果的功能受到很大限制,因为它只提供指定观察期内最近的测试结果。因此,该平台不适合分析在一个观察期的多个时间点收集的实验室数据。本文介绍了创新的、数据知情的解决方案来解决这些限制,为旨在利用TriNetX检查临床实验室数据的研究人员提供实用指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信