Motion Artifact Correction in Deep-Tissue Three-Photon Fluorescence Microscopy Using Adaptive Optical Flow Learning With Transformer.

IF 2.3
Yifei Li, Runnan Zhang, Keying Li, Yalun Wang, Mubin He, Jun Qian
{"title":"Motion Artifact Correction in Deep-Tissue Three-Photon Fluorescence Microscopy Using Adaptive Optical Flow Learning With Transformer.","authors":"Yifei Li, Runnan Zhang, Keying Li, Yalun Wang, Mubin He, Jun Qian","doi":"10.1002/jbio.202500407","DOIUrl":null,"url":null,"abstract":"<p><p>Three-photon fluorescence microscopy (3PFM) enables high-resolution volumetric imaging in deep tissues but is often hindered by motion artifacts in dynamic physiological environments. Existing solutions, including surgical fixation and conventional image registration algorithms, frequently fail under intense and nonuniform motions, particularly in low-texture or highly deformed regions. To overcome these problems, we propose StabiFormer, a transformer-based optical flow learning network designed for robust motion correction. Central to StabiFormer is the stable-dynamic feature extractor, which captures interlayer dynamics to facilitate accurate image registration. Our validation across cerebrovascular and intestinal 3PFM datasets demonstrates that StabiFormer achieves near-zero displacement error relative to ground truth in brain vasculature. Furthermore, it enables artifact-free 3D visualization of intestinal macrophages and vasculature at 300 μm depth, a physiologically relevant depth for studying intestinal immune microvasculature. These results establish a noninvasive computational solution for motion-artifact-free volumetric imaging, paving the way for quantitative investigations in previously inaccessible dynamic organ systems.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202500407"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Three-photon fluorescence microscopy (3PFM) enables high-resolution volumetric imaging in deep tissues but is often hindered by motion artifacts in dynamic physiological environments. Existing solutions, including surgical fixation and conventional image registration algorithms, frequently fail under intense and nonuniform motions, particularly in low-texture or highly deformed regions. To overcome these problems, we propose StabiFormer, a transformer-based optical flow learning network designed for robust motion correction. Central to StabiFormer is the stable-dynamic feature extractor, which captures interlayer dynamics to facilitate accurate image registration. Our validation across cerebrovascular and intestinal 3PFM datasets demonstrates that StabiFormer achieves near-zero displacement error relative to ground truth in brain vasculature. Furthermore, it enables artifact-free 3D visualization of intestinal macrophages and vasculature at 300 μm depth, a physiologically relevant depth for studying intestinal immune microvasculature. These results establish a noninvasive computational solution for motion-artifact-free volumetric imaging, paving the way for quantitative investigations in previously inaccessible dynamic organ systems.

基于变压器自适应光流学习的深层三光子荧光显微镜运动伪影校正。
三光子荧光显微镜(3PFM)能够在深层组织中进行高分辨率的体积成像,但在动态生理环境中经常受到运动伪影的阻碍。现有的解决方案,包括手术固定和传统的图像配准算法,在强烈和不均匀的运动下经常失败,特别是在低纹理或高度变形的区域。为了克服这些问题,我们提出了StabiFormer,一个基于变压器的光流学习网络,设计用于鲁棒运动校正。StabiFormer的核心是稳定动态特征提取器,它捕获层间动态以促进准确的图像配准。我们对脑血管和肠道3PFM数据集的验证表明,相对于脑血管的真实情况,StabiFormer实现了接近零的位移误差。此外,它可以在300 μm深度下实现肠道巨噬细胞和血管的无伪影3D可视化,这是研究肠道免疫微血管的生理相关深度。这些结果为无运动伪影的体积成像建立了一种无创计算解决方案,为以前无法进入的动态器官系统的定量研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信