Franziska Hentzschel, Friedrich Frischknecht, Matthias Marti
{"title":"Discovery of an Atypical Arp2/3 Complex in Malaria Parasites Sheds New Light on Nuclear Actin.","authors":"Franziska Hentzschel, Friedrich Frischknecht, Matthias Marti","doi":"10.1002/cm.70030","DOIUrl":null,"url":null,"abstract":"<p><p>The Arp2/3 complex is a key actin nucleator essential for cytoskeletal dynamics in eukaryotes. Previously believed absent in apicomplexan parasites, we recently identified an atypical Arp2/3 complex in malaria parasites consisting of five divergent subunits and a putative kinetochore-associated factor. This complex ensures proper kinetochore-spindle attachment during male gametogenesis, likely by nucleating actin at the mitotic spindle. Disruption of Arp2/3 function or actin polymerization leads to defective DNA segregation into gametes and developmental arrest of the parasite in the mosquito. Our findings reveal unexpected diversity in Arp2/3 complex composition and function, highlighting specialized adaptations in malaria parasites and expanding our understanding of the Arp2/3 complex and actin functions during mitosis. Here, we discuss some of the open questions that need to be addressed to fully understand the molecular mechanism of this unusual Arp2/3 complex and its essential role in malaria transmission.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytoskeleton (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cm.70030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Arp2/3 complex is a key actin nucleator essential for cytoskeletal dynamics in eukaryotes. Previously believed absent in apicomplexan parasites, we recently identified an atypical Arp2/3 complex in malaria parasites consisting of five divergent subunits and a putative kinetochore-associated factor. This complex ensures proper kinetochore-spindle attachment during male gametogenesis, likely by nucleating actin at the mitotic spindle. Disruption of Arp2/3 function or actin polymerization leads to defective DNA segregation into gametes and developmental arrest of the parasite in the mosquito. Our findings reveal unexpected diversity in Arp2/3 complex composition and function, highlighting specialized adaptations in malaria parasites and expanding our understanding of the Arp2/3 complex and actin functions during mitosis. Here, we discuss some of the open questions that need to be addressed to fully understand the molecular mechanism of this unusual Arp2/3 complex and its essential role in malaria transmission.