A tutorial on Bayesian model averaging for exponential random graph models.

IF 1.8 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ihnwhi Heo, Jan-Willem Simons, Haiyan Liu
{"title":"A tutorial on Bayesian model averaging for exponential random graph models.","authors":"Ihnwhi Heo, Jan-Willem Simons, Haiyan Liu","doi":"10.1111/bmsp.70007","DOIUrl":null,"url":null,"abstract":"<p><p>The use of exponential random graph models (ERGMs) is becoming prevalent in psychology due to their ability to explain and predict the formation of edges between vertices in a network. Valid inference with ERGMs requires correctly specifying endogenous and exogenous effects as network statistics, guided by theory, to represent the network-generating process while ensuring key effects shaping network topology are not omitted. However, specifying a comprehensive model is challenging, particularly when relying on a single model. Despite this, most applied research continues to use a single ERGM, raising two concerns: Selecting misspecified models compromises valid statistical inference, and single-model inference ignores uncertainty in model selection. One approach to addressing these issues is Bayesian model averaging (BMA), which evaluates multiple candidate models, accounts for uncertainty in parameter estimation and model selection, and is more robust to model misspecification than single-model inference. This tutorial provides a guide to implementing BMA for ERGMs. We illustrate its application using data from a college friendship network, with a supplementary example based on the Florentine marriage network; both focus on averaging exogenous covariate effects. We demonstrate how BMA incorporates theoretical considerations and addresses modelling challenges in ERGMs, with annotated R code provided for replication and extension.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.70007","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The use of exponential random graph models (ERGMs) is becoming prevalent in psychology due to their ability to explain and predict the formation of edges between vertices in a network. Valid inference with ERGMs requires correctly specifying endogenous and exogenous effects as network statistics, guided by theory, to represent the network-generating process while ensuring key effects shaping network topology are not omitted. However, specifying a comprehensive model is challenging, particularly when relying on a single model. Despite this, most applied research continues to use a single ERGM, raising two concerns: Selecting misspecified models compromises valid statistical inference, and single-model inference ignores uncertainty in model selection. One approach to addressing these issues is Bayesian model averaging (BMA), which evaluates multiple candidate models, accounts for uncertainty in parameter estimation and model selection, and is more robust to model misspecification than single-model inference. This tutorial provides a guide to implementing BMA for ERGMs. We illustrate its application using data from a college friendship network, with a supplementary example based on the Florentine marriage network; both focus on averaging exogenous covariate effects. We demonstrate how BMA incorporates theoretical considerations and addresses modelling challenges in ERGMs, with annotated R code provided for replication and extension.

一个关于指数随机图模型的贝叶斯模型平均的教程。
指数随机图模型(ergm)的使用在心理学中越来越流行,因为它们能够解释和预测网络中顶点之间的边的形成。对ergm的有效推断需要在理论指导下,正确地指定内源性和外源性效应作为网络统计,以表示网络生成过程,同时确保不遗漏影响网络拓扑结构的关键效应。然而,指定一个全面的模型是具有挑战性的,特别是当依赖于单个模型时。尽管如此,大多数应用研究仍然使用单一ERGM,这引起了两个问题:选择错误指定的模型会损害有效的统计推断,单一模型推断忽略了模型选择中的不确定性。解决这些问题的一种方法是贝叶斯模型平均(BMA),它评估多个候选模型,考虑参数估计和模型选择中的不确定性,并且比单模型推理对模型错误规范的鲁棒性更强。本教程提供了为ergm实现BMA的指南。我们用一个大学友谊网络的数据来说明它的应用,并辅以一个基于佛罗伦萨婚姻网络的例子;两者都关注外生协变量效应的平均。我们演示了BMA如何结合理论考虑并解决ergm中的建模挑战,并提供了用于复制和扩展的注释R代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信