Enhanced Near-Infrared-Excitable Organic Afterglow Nanoparticles for Deep-Tissue Multimodal Imaging via Singlet Oxygen-Mediated Energy Transfer.

IF 10.7 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2025-08-14 eCollection Date: 2025-01-01 DOI:10.34133/research.0834
Yuzhen Yu, Zhe Li, Shiyi Liao, Baoli Yin, Qingpeng Zhang, Jiaqi Fu, Cheng Zhang, Ying Zhou, Guosheng Song
{"title":"Enhanced Near-Infrared-Excitable Organic Afterglow Nanoparticles for Deep-Tissue Multimodal Imaging via Singlet Oxygen-Mediated Energy Transfer.","authors":"Yuzhen Yu, Zhe Li, Shiyi Liao, Baoli Yin, Qingpeng Zhang, Jiaqi Fu, Cheng Zhang, Ying Zhou, Guosheng Song","doi":"10.34133/research.0834","DOIUrl":null,"url":null,"abstract":"<p><p>Afterglow imaging offers exceptional signal-to-background ratios (SBRs) by circumventing real-time excitation and autofluorescence, yet conventional systems rely on visible-light excitation, limiting tissue penetration and signal intensity. Here, we report near-infrared-excitable organic afterglow nanoparticles (NOANPs) that leverage singlet oxygen (<sup>1</sup>O<sub>2</sub>)-mediated energy transfer to achieve prolonged, high-intensity emission with minimal photobleaching. The nanoparticles integrate a near-infrared-photoactive sensitizer (NAM-0), which generates abundant <sup>1</sup>O<sub>2</sub> under 808-nm laser excitation, and a triplenet-anthracene derivative (TD) as the afterglow substrate, which converts <sup>1</sup>O<sub>2</sub> into sustained luminescence. Co-encapsulation via one-step nanocoprecipitation ensures proximity between NAM-0 and TD, enabling efficient energy transfer and yielding exceptional afterglow brightness (>10<sup>9</sup> photons/s) at ultralow concentrations (10 μg/ml). NOANPs enable deep-tissue imaging (up to 3.0 cm ex vivo) by synergizing the superior penetration of near-infrared light with organic afterglow chemistry. The nanoparticles uniquely support three imaging modes: fluorescence, white light-activated afterglow, and near-infrared-triggered afterglow, which were validated in orthotopic murine models of pancreatic cancer and glioma. By synergizing near-infrared excitation with organic afterglow chemistry, this work overcomes longstanding limitations in penetration depth of excitation light, offering a versatile tool for precision imaging.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0834"},"PeriodicalIF":10.7000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12352855/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0834","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Afterglow imaging offers exceptional signal-to-background ratios (SBRs) by circumventing real-time excitation and autofluorescence, yet conventional systems rely on visible-light excitation, limiting tissue penetration and signal intensity. Here, we report near-infrared-excitable organic afterglow nanoparticles (NOANPs) that leverage singlet oxygen (1O2)-mediated energy transfer to achieve prolonged, high-intensity emission with minimal photobleaching. The nanoparticles integrate a near-infrared-photoactive sensitizer (NAM-0), which generates abundant 1O2 under 808-nm laser excitation, and a triplenet-anthracene derivative (TD) as the afterglow substrate, which converts 1O2 into sustained luminescence. Co-encapsulation via one-step nanocoprecipitation ensures proximity between NAM-0 and TD, enabling efficient energy transfer and yielding exceptional afterglow brightness (>109 photons/s) at ultralow concentrations (10 μg/ml). NOANPs enable deep-tissue imaging (up to 3.0 cm ex vivo) by synergizing the superior penetration of near-infrared light with organic afterglow chemistry. The nanoparticles uniquely support three imaging modes: fluorescence, white light-activated afterglow, and near-infrared-triggered afterglow, which were validated in orthotopic murine models of pancreatic cancer and glioma. By synergizing near-infrared excitation with organic afterglow chemistry, this work overcomes longstanding limitations in penetration depth of excitation light, offering a versatile tool for precision imaging.

通过单线态氧介导的能量转移增强近红外可激发有机余辉纳米颗粒用于深层组织多模态成像。
余辉成像通过避开实时激发和自身荧光,提供了卓越的信号与背景比(sbr),然而传统的系统依赖于可见光激发,限制了组织穿透和信号强度。在这里,我们报道了近红外可激发有机余辉纳米颗粒(NOANPs),它利用单线态氧(1O2)介导的能量转移来实现长时间、高强度的发光,同时最小的光漂白。纳米粒子集成了近红外光活性敏化剂(NAM-0)和三烯蒽衍生物(TD),后者在808 nm激光激发下产生大量的10o2,后者作为余辉底物,将10o2转化为持续发光。通过一步纳米沉淀的共封装确保了纳米-0和TD之间的接近,实现了高效的能量传递,并在超低浓度(10 μg/ml)下产生了非凡的余辉亮度(>109光子/秒)。NOANPs通过近红外光与有机余辉化学的协同作用,实现深层组织成像(离体深度达3.0厘米)。纳米颗粒独特地支持三种成像模式:荧光、白光激活的余辉和近红外触发的余辉,这在胰腺癌和胶质瘤的原位小鼠模型中得到了验证。通过将近红外激发与有机余辉化学相结合,这项工作克服了激发光穿透深度的长期限制,为精密成像提供了一种多功能工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信