Soyeon Park, Yunha Hwang, Ki Seong Eom, Jin Sung Cheong, Seung Jae Lee
{"title":"Controlling gene expression through five zinc finger domains of ZNF18.","authors":"Soyeon Park, Yunha Hwang, Ki Seong Eom, Jin Sung Cheong, Seung Jae Lee","doi":"10.1002/pro.70278","DOIUrl":null,"url":null,"abstract":"<p><p>Zinc finger (ZF) proteins are the most abundant transcription factors in vertebrates, and they regulate gene expression through interactions with cis-acting elements. ZF domains selectively recognize specific sequences to accelerate or repress target genes. Zinc finger protein 18 (ZNF18) contains five CX<sub>2</sub>CX<sub>12</sub>HX<sub>3</sub>H-type ZFs at the C-terminus, which are expressed in the brain and other organs of the biological system. Bioinformatic study proposed that cyclin-dependent kinase 1 (CDK1) is in the signaling cascade of ZNF18; although experimental evidence has not yet been reported. In this study, we expressed and purified ZNF18(ZF1-5), five ZF domains from ZNF18, and investigated metal binding specificity and promoter interactions. ZNF18(ZF1-5) has specific coordination to Zn<sup>2+</sup> (K<sub>d</sub> ≤ 18 nM) compared with other xenobiotic metal ions, including Co<sup>2+</sup>, Fe<sup>2+</sup>, and Fe<sup>3+</sup>, with 98.5% of reduced ZF domains after purification. This significantly active ZF can be one of the major reasons for tight coordination affinity. CDK1 rescued the arrested cell cycle induced by DNA damage, resulting in tumorigenesis. Zn<sup>2+</sup>-ZNF18(ZF1-5) specifically binds to cis-acting elements of cdk1 (K<sub>d</sub> = 4.63 ± 0.07 nM), mediated by a cell cycle-dependent element (cde, 5'-CGCGG) and a cell cycle gene homology region (chr, 5'-TTGAA). The ZNF18 superfamily was expressed in the brain for the regulation of neuronal development and cell differentiation. Zn<sup>2+</sup>-ZNF18(ZF1-5) interacted with promoters in the insulin response sequence (IRS) for inhibition of dopamine secretion and cis-acting element of brain-2 (BRN2), which controlled astrocyte and cancer development. These results provide the first evidence that ZNF18(ZF1-5) regulates the cell cycle and neuronal development through transcriptional regulation.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 9","pages":"e70278"},"PeriodicalIF":5.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12359201/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70278","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc finger (ZF) proteins are the most abundant transcription factors in vertebrates, and they regulate gene expression through interactions with cis-acting elements. ZF domains selectively recognize specific sequences to accelerate or repress target genes. Zinc finger protein 18 (ZNF18) contains five CX2CX12HX3H-type ZFs at the C-terminus, which are expressed in the brain and other organs of the biological system. Bioinformatic study proposed that cyclin-dependent kinase 1 (CDK1) is in the signaling cascade of ZNF18; although experimental evidence has not yet been reported. In this study, we expressed and purified ZNF18(ZF1-5), five ZF domains from ZNF18, and investigated metal binding specificity and promoter interactions. ZNF18(ZF1-5) has specific coordination to Zn2+ (Kd ≤ 18 nM) compared with other xenobiotic metal ions, including Co2+, Fe2+, and Fe3+, with 98.5% of reduced ZF domains after purification. This significantly active ZF can be one of the major reasons for tight coordination affinity. CDK1 rescued the arrested cell cycle induced by DNA damage, resulting in tumorigenesis. Zn2+-ZNF18(ZF1-5) specifically binds to cis-acting elements of cdk1 (Kd = 4.63 ± 0.07 nM), mediated by a cell cycle-dependent element (cde, 5'-CGCGG) and a cell cycle gene homology region (chr, 5'-TTGAA). The ZNF18 superfamily was expressed in the brain for the regulation of neuronal development and cell differentiation. Zn2+-ZNF18(ZF1-5) interacted with promoters in the insulin response sequence (IRS) for inhibition of dopamine secretion and cis-acting element of brain-2 (BRN2), which controlled astrocyte and cancer development. These results provide the first evidence that ZNF18(ZF1-5) regulates the cell cycle and neuronal development through transcriptional regulation.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).