Synergistic action of specialized metabolites from divergent biosynthesis in the human oral microbiome.

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
McKenna Loop Yao, Nicholas A Zill, Colin Charles Barber, Yongle Du, Peijun Lin, Rui Zhai, Eunice Yoon, Dunya Al Marzooqi, Wenjun Zhang
{"title":"Synergistic action of specialized metabolites from divergent biosynthesis in the human oral microbiome.","authors":"McKenna Loop Yao, Nicholas A Zill, Colin Charles Barber, Yongle Du, Peijun Lin, Rui Zhai, Eunice Yoon, Dunya Al Marzooqi, Wenjun Zhang","doi":"10.1073/pnas.2504492122","DOIUrl":null,"url":null,"abstract":"<p><p>Despite extensive efforts, our understanding of the virulence factors contributing to oral biofilm formation-a hallmark of dental caries-remains incomplete. We present evidence that the specialized metabolism of the oral microbiome is a critical yet underexplored factor in oral biofilm formation. Through microbiome analysis, we identified a hybrid nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) encoding biosynthetic gene cluster that correlates with dental caries and is widely represented in oral pathogens, including <i>Streptococcus mutans</i>. This gene cluster produces two major mutanoclumpin metabolites, MC-584 and MC-586, which feature molecular scaffolds differing in a C-C macrocyclic linkage. Both metabolites synergistically promote robust biofilm formation of <i>S. mutans</i> through a rare dual-metabolite mode of action. Further, each metabolite binds uniquely to the <i>S. mutans</i> cell surface, resulting in distinct multicellular morphologies. The biosynthesis of mutanoclumpins employs a unique chemical logic that produces two major products, rare within PKS-NRPS assembly lines. This study underscores the importance of characterizing genes implicated in human diseases through microbiome analysis and lays the foundation for exploring strategies to inhibit streptococci-induced dental caries.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 34","pages":"e2504492122"},"PeriodicalIF":9.1000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12403116/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2504492122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Despite extensive efforts, our understanding of the virulence factors contributing to oral biofilm formation-a hallmark of dental caries-remains incomplete. We present evidence that the specialized metabolism of the oral microbiome is a critical yet underexplored factor in oral biofilm formation. Through microbiome analysis, we identified a hybrid nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) encoding biosynthetic gene cluster that correlates with dental caries and is widely represented in oral pathogens, including Streptococcus mutans. This gene cluster produces two major mutanoclumpin metabolites, MC-584 and MC-586, which feature molecular scaffolds differing in a C-C macrocyclic linkage. Both metabolites synergistically promote robust biofilm formation of S. mutans through a rare dual-metabolite mode of action. Further, each metabolite binds uniquely to the S. mutans cell surface, resulting in distinct multicellular morphologies. The biosynthesis of mutanoclumpins employs a unique chemical logic that produces two major products, rare within PKS-NRPS assembly lines. This study underscores the importance of characterizing genes implicated in human diseases through microbiome analysis and lays the foundation for exploring strategies to inhibit streptococci-induced dental caries.

人类口腔微生物群中不同生物合成的特殊代谢物的协同作用。
尽管我们做了大量的努力,但我们对导致口腔生物膜形成(龋齿的一个标志)的毒力因素的了解仍然不完整。我们提出的证据表明,口腔微生物组的特殊代谢是口腔生物膜形成的一个关键因素,但尚未被充分探索。通过微生物组分析,我们发现了一个编码与龋齿相关的生物合成基因簇的非核糖体肽合成酶(NRPS)和聚酮合成酶(PKS)的杂交基因簇,该基因簇广泛存在于口腔病原体中,包括变形链球菌。该基因簇产生两种主要的突变团蛋白代谢物MC-584和MC-586,其特征是在C-C大环连锁中存在不同的分子支架。这两种代谢物通过一种罕见的双代谢物作用模式协同促进变形链球菌强健的生物膜形成。此外,每种代谢物都与变形链球菌的细胞表面结合,形成不同的多细胞形态。突变聚集素的生物合成采用独特的化学逻辑,产生两种主要产品,在PKS-NRPS装配线中很少见。该研究强调了通过微生物组分析表征人类疾病相关基因的重要性,并为探索抑制链球菌引起的龋齿的策略奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信