CRISPR/Cas9 mediated ENT2 gene knockout altered purine catabolic pathway and induced apoptosis in colorectal cell lines.

IF 2.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-08-18 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0329501
Safaa M Naes, Sharaniza Ab-Rahim, Musalmah Mazlan, Saiful Effendi Syafruddin, M Aiman Mohtar, Asmaa Y Abuhamad, Amirah Abdul Rahman
{"title":"CRISPR/Cas9 mediated ENT2 gene knockout altered purine catabolic pathway and induced apoptosis in colorectal cell lines.","authors":"Safaa M Naes, Sharaniza Ab-Rahim, Musalmah Mazlan, Saiful Effendi Syafruddin, M Aiman Mohtar, Asmaa Y Abuhamad, Amirah Abdul Rahman","doi":"10.1371/journal.pone.0329501","DOIUrl":null,"url":null,"abstract":"<p><p>Although purine metabolism is one of the most impacted pathways in colorectal cancer (CRC), little is known about the role of equilibrative nucleoside transporter 2 (ENT2) in CRC development and its association with the altered purine metabolism pathway. This study aimed to determine the role of ENT2 in altered purine metabolism in the early and late stages of CRC using CRISPR/Cas9 gene editing tools and a variety of functional experiments. The expression of ENT2 was significantly higher (P < 0.001) in all CRC cell lines as compared to the normal colon cells. The two CRC cell lines with the highest ENT2 expression, the early stage HT29 cells and the late stage DLD1 cells, were knocked out (KO) using the CRISPR/Cas9 tool. The hypoxanthine (HPX) level and the xanthine oxidase (XO) activity were significantly higher in both HT29/KO and DLD1/KO single cell-derived clones (P < 0.01). The increase in HPX level and XO activity were associated with an elevation in the reactive oxygen species (ROS) level. These data suggest that the ENT2 KO elevated the ROS levels induced apoptosis and impaired the cell proliferation of the early stage of CRC cell line, i.e., HT29/KO clonal cells. In this context, targeting ENT2 gene might be a potential strategy in CRC treatment by increasing the production of ROS and hence, inducing the apoptosis pathway.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 8","pages":"e0329501"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360568/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0329501","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Although purine metabolism is one of the most impacted pathways in colorectal cancer (CRC), little is known about the role of equilibrative nucleoside transporter 2 (ENT2) in CRC development and its association with the altered purine metabolism pathway. This study aimed to determine the role of ENT2 in altered purine metabolism in the early and late stages of CRC using CRISPR/Cas9 gene editing tools and a variety of functional experiments. The expression of ENT2 was significantly higher (P < 0.001) in all CRC cell lines as compared to the normal colon cells. The two CRC cell lines with the highest ENT2 expression, the early stage HT29 cells and the late stage DLD1 cells, were knocked out (KO) using the CRISPR/Cas9 tool. The hypoxanthine (HPX) level and the xanthine oxidase (XO) activity were significantly higher in both HT29/KO and DLD1/KO single cell-derived clones (P < 0.01). The increase in HPX level and XO activity were associated with an elevation in the reactive oxygen species (ROS) level. These data suggest that the ENT2 KO elevated the ROS levels induced apoptosis and impaired the cell proliferation of the early stage of CRC cell line, i.e., HT29/KO clonal cells. In this context, targeting ENT2 gene might be a potential strategy in CRC treatment by increasing the production of ROS and hence, inducing the apoptosis pathway.

Abstract Image

Abstract Image

Abstract Image

CRISPR/Cas9介导的ENT2基因敲除改变了嘌呤分解代谢途径并诱导结直肠癌细胞系凋亡。
虽然嘌呤代谢是结直肠癌(CRC)中最受影响的途径之一,但对平衡核苷转运蛋白2 (ENT2)在结直肠癌发展中的作用及其与嘌呤代谢途径改变的关系知之甚少。本研究旨在通过CRISPR/Cas9基因编辑工具和多种功能实验,确定ENT2在CRC早期和晚期嘌呤代谢改变中的作用。ENT2表达量显著高于对照组(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信