The Arabidopsis histone methylation reader MRG2 interacts with eIF4A3 to regulate alternative splicing and circadian rhythms.

IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Plant Cell Pub Date : 2025-08-04 DOI:10.1093/plcell/koaf209
Yaxue Huang, Jiabing Wu, Xiang Li, Jiachen Wang, Mengmeng Ma, Wen Jiang, Wen-Hui Shen, Yu Yu, Aiwu Dong
{"title":"The Arabidopsis histone methylation reader MRG2 interacts with eIF4A3 to regulate alternative splicing and circadian rhythms.","authors":"Yaxue Huang, Jiabing Wu, Xiang Li, Jiachen Wang, Mengmeng Ma, Wen Jiang, Wen-Hui Shen, Yu Yu, Aiwu Dong","doi":"10.1093/plcell/koaf209","DOIUrl":null,"url":null,"abstract":"<p><p>Alternative splicing (AS) is an important regulatory mechanism for fine-tuning gene transcription in eukaryotes. H3K36me3 affects AS, but the underlying mechanisms remain obscure. In this study, we showed that the Arabidopsis thaliana H3K36me3 reader protein MORF-RELATED GENE 2 (MRG2) directly interacts with eIF4A3, a component of the exon junction complex within the spliceosome. The eif4a3 mutant displays a late-flowering phenotype similar to that of the mrg1 mrg2 double mutant under long-day, but not short-day, photoperiod conditions. Transcriptome analysis showed that deleting either eIF4A3 or MRG1/MRG2 causes similar changes in gene transcription and AS, which are involved in diverse processes including circadian rhythm regulation and responses to environmental stimuli. Both eIF4A3 and MRG1/MRG2 are required for the AS of key circadian clock genes and the maintenance of an appropriate circadian rhythm. RNA immunoprecipitation sequencing (RIP-seq) showed that MRG1/MRG2 promote eIF4A3 binding to the transcripts of a set of genes, including the key circadian clock genes PSEUDO-RESPONSE REGULATOR 7 (PRR7) and PRR9. Moreover, eIF4A3 and MRG2 directly target and enhance each other's binding to PRR7 and PRR9 chromatin. Collectively, our findings reveal that the reader protein MRG2 recognizes histone methylation signals and recruits eIF4A3 to regulate co-transcriptional AS events, establishing a direct link between histone modification and the splicing machinery in plants.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koaf209","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alternative splicing (AS) is an important regulatory mechanism for fine-tuning gene transcription in eukaryotes. H3K36me3 affects AS, but the underlying mechanisms remain obscure. In this study, we showed that the Arabidopsis thaliana H3K36me3 reader protein MORF-RELATED GENE 2 (MRG2) directly interacts with eIF4A3, a component of the exon junction complex within the spliceosome. The eif4a3 mutant displays a late-flowering phenotype similar to that of the mrg1 mrg2 double mutant under long-day, but not short-day, photoperiod conditions. Transcriptome analysis showed that deleting either eIF4A3 or MRG1/MRG2 causes similar changes in gene transcription and AS, which are involved in diverse processes including circadian rhythm regulation and responses to environmental stimuli. Both eIF4A3 and MRG1/MRG2 are required for the AS of key circadian clock genes and the maintenance of an appropriate circadian rhythm. RNA immunoprecipitation sequencing (RIP-seq) showed that MRG1/MRG2 promote eIF4A3 binding to the transcripts of a set of genes, including the key circadian clock genes PSEUDO-RESPONSE REGULATOR 7 (PRR7) and PRR9. Moreover, eIF4A3 and MRG2 directly target and enhance each other's binding to PRR7 and PRR9 chromatin. Collectively, our findings reveal that the reader protein MRG2 recognizes histone methylation signals and recruits eIF4A3 to regulate co-transcriptional AS events, establishing a direct link between histone modification and the splicing machinery in plants.

拟南芥组蛋白甲基化解读器MRG2与eIF4A3相互作用,调节选择性剪接和昼夜节律。
选择性剪接(AS)是真核生物调控基因转录的重要机制。H3K36me3影响AS,但其潜在机制尚不清楚。在这项研究中,我们发现拟南芥H3K36me3读取器蛋白morf相关基因2 (MRG2)直接与剪接体内外显子连接复合物的组成部分eIF4A3相互作用。在长日照条件下,eif4a3突变体表现出与mrg1 mrg2双突变体相似的晚花表型,而不是短日照条件下。转录组分析显示,删除eIF4A3或MRG1/MRG2都会导致基因转录和AS的类似变化,这些变化涉及昼夜节律调节和对环境刺激的反应等多种过程。eIF4A3和MRG1/MRG2都是关键生物钟基因的AS和维持适当的昼夜节律所必需的。RNA免疫沉淀测序(RIP-seq)显示,MRG1/MRG2促进eIF4A3与一系列基因的转录本结合,包括关键的生物钟基因伪反应调节因子7 (PRR7)和PRR9。此外,eIF4A3和MRG2直接靶向并增强彼此与PRR7和PRR9染色质的结合。总的来说,我们的研究结果表明,阅读器蛋白MRG2识别组蛋白甲基化信号并招募eIF4A3来调节共转录AS事件,在植物组蛋白修饰和剪接机制之间建立了直接联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Cell
Plant Cell 生物-生化与分子生物学
CiteScore
16.90
自引率
5.20%
发文量
337
审稿时长
2.4 months
期刊介绍: Title: Plant Cell Publisher: Published monthly by the American Society of Plant Biologists (ASPB) Produced by Sheridan Journal Services, Waterbury, VT History and Impact: Established in 1989 Within three years of publication, ranked first in impact among journals in plant sciences Maintains high standard of excellence Scope: Publishes novel research of special significance in plant biology Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience Tenets: Publish the most exciting, cutting-edge research in plant cellular and molecular biology Provide rapid turnaround time for reviewing and publishing research papers Ensure highest quality reproduction of data Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信