{"title":"Spontaneous eye blink-based machine learning for tracking clinical fluctuations in Parkinson's disease.","authors":"Noriko Nishikawa, Shin Tejima, Daiki Kamiyama, Mitsumasa Kurita, Koshi Yamamoto, Satoki Imai, Wataru Sako, Genko Oyama, Taku Hatano, Nobutaka Hattori","doi":"10.1038/s41531-025-01094-w","DOIUrl":null,"url":null,"abstract":"<p><p>In this uncontrolled, open-label exploratory clinical study, the authors explore the potential of blink data as a digital biomarker for estimating clinical indices of Parkinson's disease (PD) using a machine learning approach. Blink data were collected from 20 patients with PD before and after (up to 4 h) L-dopa/decarboxylase inhibitor administration. Concurrent assessments of patient diary-based ON/OFF and dyskinesia, L-dopa plasma concentration, and MDS-UPDRS Part III scores were conducted at 30 min intervals. The models were developed to predict clinical symptoms based on blink data collected at 3 min intervals. The most effective post-processing models accurately predicted the ON/OFF states (mean area under the receiver operating characteristic curve (AUC<sub>ROC</sub>) = 0.87) and the presence of dyskinesia (mean AUC<sub>ROC</sub> = 0.84). They also moderately predicted MDS-UPDRS Part III scores (mean Spearman's correlation ρ = 0.54) and plasma L-dopa concentrations (ρ = 0.57). Our findings highlight the potential of the spontaneous eye blink as a noninvasive, real-time digital biomarker for PD.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"11 1","pages":"247"},"PeriodicalIF":8.2000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361378/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-025-01094-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this uncontrolled, open-label exploratory clinical study, the authors explore the potential of blink data as a digital biomarker for estimating clinical indices of Parkinson's disease (PD) using a machine learning approach. Blink data were collected from 20 patients with PD before and after (up to 4 h) L-dopa/decarboxylase inhibitor administration. Concurrent assessments of patient diary-based ON/OFF and dyskinesia, L-dopa plasma concentration, and MDS-UPDRS Part III scores were conducted at 30 min intervals. The models were developed to predict clinical symptoms based on blink data collected at 3 min intervals. The most effective post-processing models accurately predicted the ON/OFF states (mean area under the receiver operating characteristic curve (AUCROC) = 0.87) and the presence of dyskinesia (mean AUCROC = 0.84). They also moderately predicted MDS-UPDRS Part III scores (mean Spearman's correlation ρ = 0.54) and plasma L-dopa concentrations (ρ = 0.57). Our findings highlight the potential of the spontaneous eye blink as a noninvasive, real-time digital biomarker for PD.
期刊介绍:
npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.