Automating the Referral of Bone Metastases Patients With and Without the Use of Large Language Models.

IF 3.9 2区 医学 Q1 CLINICAL NEUROLOGY
Karl L Sangwon, Xu Han, Anton Becker, Yuchong Zhang, Richard Ni, Jeff Zhang, Daniel Alexander Alber, Anton Alyakin, Michelle Nakatsuka, Nicola Fabbri, Yindalon Aphinyanaphongs, Jonathan T Yang, Abraham Chachoua, Douglas Kondziolka, Ilya Laufer, Eric Karl Oermann
{"title":"Automating the Referral of Bone Metastases Patients With and Without the Use of Large Language Models.","authors":"Karl L Sangwon, Xu Han, Anton Becker, Yuchong Zhang, Richard Ni, Jeff Zhang, Daniel Alexander Alber, Anton Alyakin, Michelle Nakatsuka, Nicola Fabbri, Yindalon Aphinyanaphongs, Jonathan T Yang, Abraham Chachoua, Douglas Kondziolka, Ilya Laufer, Eric Karl Oermann","doi":"10.1227/neu.0000000000003683","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Bone metastases, affecting more than 4.8% of patients with cancer annually, and particularly spinal metastases require urgent intervention to prevent neurological complications. However, the current process of manually reviewing radiological reports leads to potential delays in specialist referrals. We hypothesized that natural language processing (NLP) review of routine radiology reports could automate the referral process for timely multidisciplinary care of spinal metastases.</p><p><strong>Methods: </strong>We assessed 3 NLP models-a rule-based regular expression (RegEx) model, GPT-4, and a specialized Bidirectional Encoder Representations from Transformers (BERT) model (NYUTron)-for automated detection and referral of bone metastases. Study inclusion criteria targeted patients with active cancer diagnoses who underwent advanced imaging (computed tomography, MRI, or positron emission tomography) without previous specialist referral. We defined 2 separate tasks: task of identifying clinically significant bone metastatic terms (lexical detection), and identifying cases needing a specialist follow-up (clinical referral). Models were developed using 3754 hand-labeled advanced imaging studies in 2 phases: phase 1 focused on spine metastases, and phase 2 generalized to bone metastases. Standard McRae's line performance metrics were evaluated and compared across all stages and tasks.</p><p><strong>Results: </strong>In the lexical detection, a simple RegEx achieved the highest performance (sensitivity 98.4%, specificity 97.6%, F1 = 0.965), followed by NYUTron (sensitivity 96.8%, specificity 89.9%, and F1 = 0.787). For the clinical referral task, RegEx also demonstrated superior performance (sensitivity 92.3%, specificity 87.5%, and F1 = 0.936), followed by a fine-tuned NYUTron model (sensitivity 90.0%, specificity 66.7%, and F1 = 0.750).</p><p><strong>Conclusion: </strong>An NLP-based automated referral system can accurately identify patients with bone metastases requiring specialist evaluation. A simple RegEx model excels in syntax-based identification and expert-informed rule generation for efficient referral patient recommendation in comparison with advanced NLP models. This system could significantly reduce missed follow-ups and enhance timely intervention for patients with bone metastases.</p>","PeriodicalId":19276,"journal":{"name":"Neurosurgery","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1227/neu.0000000000003683","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objectives: Bone metastases, affecting more than 4.8% of patients with cancer annually, and particularly spinal metastases require urgent intervention to prevent neurological complications. However, the current process of manually reviewing radiological reports leads to potential delays in specialist referrals. We hypothesized that natural language processing (NLP) review of routine radiology reports could automate the referral process for timely multidisciplinary care of spinal metastases.

Methods: We assessed 3 NLP models-a rule-based regular expression (RegEx) model, GPT-4, and a specialized Bidirectional Encoder Representations from Transformers (BERT) model (NYUTron)-for automated detection and referral of bone metastases. Study inclusion criteria targeted patients with active cancer diagnoses who underwent advanced imaging (computed tomography, MRI, or positron emission tomography) without previous specialist referral. We defined 2 separate tasks: task of identifying clinically significant bone metastatic terms (lexical detection), and identifying cases needing a specialist follow-up (clinical referral). Models were developed using 3754 hand-labeled advanced imaging studies in 2 phases: phase 1 focused on spine metastases, and phase 2 generalized to bone metastases. Standard McRae's line performance metrics were evaluated and compared across all stages and tasks.

Results: In the lexical detection, a simple RegEx achieved the highest performance (sensitivity 98.4%, specificity 97.6%, F1 = 0.965), followed by NYUTron (sensitivity 96.8%, specificity 89.9%, and F1 = 0.787). For the clinical referral task, RegEx also demonstrated superior performance (sensitivity 92.3%, specificity 87.5%, and F1 = 0.936), followed by a fine-tuned NYUTron model (sensitivity 90.0%, specificity 66.7%, and F1 = 0.750).

Conclusion: An NLP-based automated referral system can accurately identify patients with bone metastases requiring specialist evaluation. A simple RegEx model excels in syntax-based identification and expert-informed rule generation for efficient referral patient recommendation in comparison with advanced NLP models. This system could significantly reduce missed follow-ups and enhance timely intervention for patients with bone metastases.

使用和不使用大型语言模型的骨转移患者的自动转诊。
背景和目的:骨转移,每年影响超过4.8%的癌症患者,特别是脊柱转移需要紧急干预以预防神经系统并发症。然而,目前手工审查放射报告的过程会导致专家转诊的潜在延误。我们假设常规放射学报告的自然语言处理(NLP)审查可以自动转诊过程,以便及时进行脊柱转移的多学科护理。方法:我们评估了3种NLP模型——基于规则的正则表达式(RegEx)模型、GPT-4和专门的变形器双向编码器表示(BERT)模型(NYUTron)——用于骨转移的自动检测和转诊。研究纳入标准针对的是在没有专科转诊的情况下接受高级影像学检查(计算机断层扫描、MRI或正电子发射断层扫描)的活动性癌症诊断患者。我们定义了两个独立的任务:识别临床重要的骨转移术语(词汇检测)的任务,以及识别需要专家随访的病例(临床转诊)。使用3754份手工标记的高级影像学研究分为两个阶段:第一阶段专注于脊柱转移,第二阶段广泛用于骨转移。标准麦克雷的生产线性能指标在所有阶段和任务中进行了评估和比较。结果:在词法检测中,简单RegEx的灵敏度最高(98.4%,特异度97.6%,F1 = 0.965),其次是NYUTron(灵敏度96.8%,特异度89.9%,F1 = 0.787)。对于临床转诊任务,RegEx也表现出优异的表现(灵敏度92.3%,特异性87.5%,F1 = 0.936),其次是微调的NYUTron模型(灵敏度90.0%,特异性66.7%,F1 = 0.750)。结论:基于nlp的自动转诊系统可以准确识别需要专家评估的骨转移患者。与先进的NLP模型相比,简单的RegEx模型在基于语法的识别和专家知情规则生成方面表现出色,可以有效地推荐转诊患者。该系统可显著减少骨转移患者的随访漏诊,提高对患者的及时干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurosurgery
Neurosurgery 医学-临床神经学
CiteScore
8.20
自引率
6.20%
发文量
898
审稿时长
2-4 weeks
期刊介绍: Neurosurgery, the official journal of the Congress of Neurological Surgeons, publishes research on clinical and experimental neurosurgery covering the very latest developments in science, technology, and medicine. For professionals aware of the rapid pace of developments in the field, this journal is nothing short of indispensable as the most complete window on the contemporary field of neurosurgery. Neurosurgery is the fastest-growing journal in the field, with a worldwide reputation for reliable coverage delivered with a fresh and dynamic outlook.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信