{"title":"Whitlockite as a next-generation biomaterial for bone regeneration: A systematic review of <i>In Vivo</i> evidence for bone regeneration.","authors":"Sinduja Palati, Dhanraj Ganapathy, Saravanan Sekaran","doi":"10.1016/j.jobcr.2025.08.002","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Whitlockite (WH), a magnesium-enriched calcium phosphate mineral, is emerging as a promising biomaterial in bone tissue engineering due to its chemical similarity to natural bone and dual role in promoting osteogenesis and regulating bone resorption. Compared to conventional materials like hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), WH offers higher solubility, superior ion release (notably Mg<sup>2+</sup>), and enhanced bioactivity.</p><p><strong>Objective: </strong>This systematic review evaluates the in vivo efficacy of WH-based biomaterials in bone regeneration. Key outcomes include bone volume fraction (BV/TV), bone mineral density (BMD), osteogenic marker expression, and histological bone quality.</p><p><strong>Methods: </strong>A comprehensive search of PubMed, Web of Science, Google Scholar, and Cochrane Central was conducted up to March 2025. Eligible studies assessed WH-based materials in animal bone defect models with quantifiable regenerative outcomes. Two reviewers independently performed data extraction and quality assessment using the SYRCLE Risk of Bias tool. Meta-analysis was not feasible due to significant heterogeneity across models, scaffold types, and endpoints.</p><p><strong>Results: </strong>Seventeen animal studies (rats, mice, rabbits) met inclusion criteria. WH was used in forms such as nanoparticles, granules, and scaffolds with polymers like chitosan and gelatin. WH consistently outperformed HA and β-TCP with up to a 2-6 % increase in BV/TV, BMD, and histological bone formation. Upregulation of ALP, OCN, RUNX2, and COL1 was observed. Doped WH variants and composites enhanced osteoinductive and angiogenic responses. No adverse effects were reported.</p><p><strong>Conclusion: </strong>WH demonstrates superior osteogenic and biocompatible properties over traditional calcium phosphates. Future standardized, long-term studies are needed to support clinical translation for orthopedic and dental bone regeneration.</p>","PeriodicalId":16609,"journal":{"name":"Journal of oral biology and craniofacial research","volume":"15 6","pages":"1176-1182"},"PeriodicalIF":0.0000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12355052/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of oral biology and craniofacial research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jobcr.2025.08.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Whitlockite (WH), a magnesium-enriched calcium phosphate mineral, is emerging as a promising biomaterial in bone tissue engineering due to its chemical similarity to natural bone and dual role in promoting osteogenesis and regulating bone resorption. Compared to conventional materials like hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), WH offers higher solubility, superior ion release (notably Mg2+), and enhanced bioactivity.
Objective: This systematic review evaluates the in vivo efficacy of WH-based biomaterials in bone regeneration. Key outcomes include bone volume fraction (BV/TV), bone mineral density (BMD), osteogenic marker expression, and histological bone quality.
Methods: A comprehensive search of PubMed, Web of Science, Google Scholar, and Cochrane Central was conducted up to March 2025. Eligible studies assessed WH-based materials in animal bone defect models with quantifiable regenerative outcomes. Two reviewers independently performed data extraction and quality assessment using the SYRCLE Risk of Bias tool. Meta-analysis was not feasible due to significant heterogeneity across models, scaffold types, and endpoints.
Results: Seventeen animal studies (rats, mice, rabbits) met inclusion criteria. WH was used in forms such as nanoparticles, granules, and scaffolds with polymers like chitosan and gelatin. WH consistently outperformed HA and β-TCP with up to a 2-6 % increase in BV/TV, BMD, and histological bone formation. Upregulation of ALP, OCN, RUNX2, and COL1 was observed. Doped WH variants and composites enhanced osteoinductive and angiogenic responses. No adverse effects were reported.
Conclusion: WH demonstrates superior osteogenic and biocompatible properties over traditional calcium phosphates. Future standardized, long-term studies are needed to support clinical translation for orthopedic and dental bone regeneration.
期刊介绍:
Journal of Oral Biology and Craniofacial Research (JOBCR)is the official journal of the Craniofacial Research Foundation (CRF). The journal aims to provide a common platform for both clinical and translational research and to promote interdisciplinary sciences in craniofacial region. JOBCR publishes content that includes diseases, injuries and defects in the head, neck, face, jaws and the hard and soft tissues of the mouth and jaws and face region; diagnosis and medical management of diseases specific to the orofacial tissues and of oral manifestations of systemic diseases; studies on identifying populations at risk of oral disease or in need of specific care, and comparing regional, environmental, social, and access similarities and differences in dental care between populations; diseases of the mouth and related structures like salivary glands, temporomandibular joints, facial muscles and perioral skin; biomedical engineering, tissue engineering and stem cells. The journal publishes reviews, commentaries, peer-reviewed original research articles, short communication, and case reports.