Clément Janot, Kahina Mohammedi, Delphine Mallet, Kévin Choron, Ingrid Plotton, Jordan Teoli, Asmahane Ladjouze, Florence Roucher-Boulez
{"title":"First intragenic inversion of <i>CYP11B1</i> gene causing 11β-hydroxylase deficiency: a molecular diagnosis easily overlooked.","authors":"Clément Janot, Kahina Mohammedi, Delphine Mallet, Kévin Choron, Ingrid Plotton, Jordan Teoli, Asmahane Ladjouze, Florence Roucher-Boulez","doi":"10.1136/jmg-2025-110880","DOIUrl":null,"url":null,"abstract":"<p><p>11β-hydroxylase deficiency (11βOHD) is the second most common cause (5%) of congenital adrenal hyperplasia (CAH). The <i>CYP11B1</i> gene shares 95% of genomic sequence homology with <i>CYP11B2,</i> and therefore Sanger sequencing remains the gold standard. We present a case of 11βOHD due to an intragenic inversion in <i>CYP11B1</i> that was missed by both the Sanger sequencing and massive parallel sequencing (MPS) methods. The child was born with virilised genitalia at Prader stage 4 and the biological findings showed a hydromineral retention pattern and a pathognomonic increase in steroid precursors suggestive of 11βOHD. Standard trio analysis revealed only one heterozygous pathogenic variation inherited from the father. The study using MPS showed similar outcomes. Careful observation of the alignment BAM files revealed breaks in sequencing depth, incomplete alignments and systematic paradoxical read-pairs orientation. A specifically designed amplification and Sanger protocol confirmed the novel NM_000497.4(<i>CYP11B1</i>):c.[892_1121+7 inv;1121+8_1121+9del]; p.(Glu298HisfsTer113) variant at heterozygous state in the proband and his mother, fulfilling the diagnosis. The present case reports the first short intragenic inversion in CAH and illustrates the pitfalls that must always be kept in mind when using sequencing methods. When the phenotype is unequivocal, a thorough investigation of the locus should be carried out with cross-use of different techniques.</p>","PeriodicalId":16237,"journal":{"name":"Journal of Medical Genetics","volume":" ","pages":"734-738"},"PeriodicalIF":3.7000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jmg-2025-110880","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
11β-hydroxylase deficiency (11βOHD) is the second most common cause (5%) of congenital adrenal hyperplasia (CAH). The CYP11B1 gene shares 95% of genomic sequence homology with CYP11B2, and therefore Sanger sequencing remains the gold standard. We present a case of 11βOHD due to an intragenic inversion in CYP11B1 that was missed by both the Sanger sequencing and massive parallel sequencing (MPS) methods. The child was born with virilised genitalia at Prader stage 4 and the biological findings showed a hydromineral retention pattern and a pathognomonic increase in steroid precursors suggestive of 11βOHD. Standard trio analysis revealed only one heterozygous pathogenic variation inherited from the father. The study using MPS showed similar outcomes. Careful observation of the alignment BAM files revealed breaks in sequencing depth, incomplete alignments and systematic paradoxical read-pairs orientation. A specifically designed amplification and Sanger protocol confirmed the novel NM_000497.4(CYP11B1):c.[892_1121+7 inv;1121+8_1121+9del]; p.(Glu298HisfsTer113) variant at heterozygous state in the proband and his mother, fulfilling the diagnosis. The present case reports the first short intragenic inversion in CAH and illustrates the pitfalls that must always be kept in mind when using sequencing methods. When the phenotype is unequivocal, a thorough investigation of the locus should be carried out with cross-use of different techniques.
期刊介绍:
Journal of Medical Genetics is a leading international peer-reviewed journal covering original research in human genetics, including reviews of and opinion on the latest developments. Articles cover the molecular basis of human disease including germline cancer genetics, clinical manifestations of genetic disorders, applications of molecular genetics to medical practice and the systematic evaluation of such applications worldwide.