Interaction strength of carbon dioxide on graphene from periodic quantum diffusion Monte Carlo.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Flaviano Della Pia, Giaan Kler-Young, Andrea Zen, Fabian Berger, Dario Alfè, Angelos Michaelides
{"title":"Interaction strength of carbon dioxide on graphene from periodic quantum diffusion Monte Carlo.","authors":"Flaviano Della Pia, Giaan Kler-Young, Andrea Zen, Fabian Berger, Dario Alfè, Angelos Michaelides","doi":"10.1063/5.0283254","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the importance of graphene based carbon capture devices, an accurate estimate of the interaction strength of a carbon dioxide molecule with graphene from periodic calculations is lacking. In this work, we compute a fixed node quantum diffusion Monte Carlo reference value for the interaction energy of a carbon dioxide molecule with a periodic free-standing graphene sheet, obtaining a value of -152 ± 15 meV. In addition, we evaluate the performance of several widely used density functional theory approximations and foundation machine learning interatomic potentials, for both carbon dioxide and water adsorption on graphene, competitive processes that play an important role in carbon capture technologies. Among the approaches tested, the B86bPBE-XDM, PBE-D3, revPBE-D3, rev-vdW-DF2, SCAN+rVV10, and PBE0-D3-ATM functionals achieve the closest agreement with DMC for the carbon dioxide-graphene interaction. The vdW-DF2, rev-vdW-DF2, and PBE0-D4-ATM functionals perform better for the competitive adsorption of water and carbon dioxide.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"163 7","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0283254","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the importance of graphene based carbon capture devices, an accurate estimate of the interaction strength of a carbon dioxide molecule with graphene from periodic calculations is lacking. In this work, we compute a fixed node quantum diffusion Monte Carlo reference value for the interaction energy of a carbon dioxide molecule with a periodic free-standing graphene sheet, obtaining a value of -152 ± 15 meV. In addition, we evaluate the performance of several widely used density functional theory approximations and foundation machine learning interatomic potentials, for both carbon dioxide and water adsorption on graphene, competitive processes that play an important role in carbon capture technologies. Among the approaches tested, the B86bPBE-XDM, PBE-D3, revPBE-D3, rev-vdW-DF2, SCAN+rVV10, and PBE0-D3-ATM functionals achieve the closest agreement with DMC for the carbon dioxide-graphene interaction. The vdW-DF2, rev-vdW-DF2, and PBE0-D4-ATM functionals perform better for the competitive adsorption of water and carbon dioxide.

二氧化碳在石墨烯上的相互作用强度的周期性量子扩散蒙特卡罗。
尽管基于石墨烯的碳捕获装置很重要,但缺乏通过周期性计算对二氧化碳分子与石墨烯相互作用强度的准确估计。在这项工作中,我们计算了二氧化碳分子与周期性独立石墨烯片相互作用能的固定节点量子扩散蒙特卡罗参考值,得到的值为-152±15 meV。此外,我们评估了几种广泛使用的密度泛函理论近似和基础机器学习原子间电位的性能,用于二氧化碳和水在石墨烯上的吸附,这两个竞争过程在碳捕获技术中起着重要作用。在测试的方法中,B86bPBE-XDM、PBE-D3、revPBE-D3、rev-vdW-DF2、SCAN+rVV10和PBE0-D3-ATM功能在二氧化碳-石墨烯相互作用方面与DMC最接近。vdW-DF2、rev-vdW-DF2和PBE0-D4-ATM官能团对水和二氧化碳的竞争性吸附表现较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信