Jiaru Hu, Wen Shen, Pi Yan, Xuemei Ge, Shang Wu, Yueyang Mao, Fen Ao, Xiaoni Jia, Yigang Wang
{"title":"Composite nano-in-micro drug delivery system for treatment of glaucoma: design strategies and research advances.","authors":"Jiaru Hu, Wen Shen, Pi Yan, Xuemei Ge, Shang Wu, Yueyang Mao, Fen Ao, Xiaoni Jia, Yigang Wang","doi":"10.1080/09205063.2025.2525672","DOIUrl":null,"url":null,"abstract":"<p><p>Glaucoma is a serious eye disease characterized by damage to the optic nerve, potentially leading to severe vision loss or even blindness. Lowering IOP is a crucial strategy in managing the disease. Although trabeculectomy is considered the gold standard in conventional treatment for preventing vision loss, surgical interventions often face challenges such as poor prognosis, high failure rates, and complications. Consequently, pharmacological treatment remains a main method in the management of glaucoma. The efficacy of drug therapy is hindered by the ocular barrier, which impedes drug penetration into the eye to reach the target tissues, resulting in low drug bioavailability. Composite nano-in-micro drug delivery systems as a solution, capable of simultaneously addressing issues such as poor ocular barrier penetration, surface adhesion, and bioavailability. This review explores different fabrication methods, materials, and design strategies for composite nano-in-micro drug delivery systems aimed at treating glaucoma. The review concludes that composite drug delivery systems hold promise as an effective strategy to enhance the bioavailability of glaucoma medications and extend drug release duration. Furthermore, these Composite systems offer innovative approaches to gene and targeted therapy, opening new avenues for the treatment of glaucoma.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-46"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2525672","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Glaucoma is a serious eye disease characterized by damage to the optic nerve, potentially leading to severe vision loss or even blindness. Lowering IOP is a crucial strategy in managing the disease. Although trabeculectomy is considered the gold standard in conventional treatment for preventing vision loss, surgical interventions often face challenges such as poor prognosis, high failure rates, and complications. Consequently, pharmacological treatment remains a main method in the management of glaucoma. The efficacy of drug therapy is hindered by the ocular barrier, which impedes drug penetration into the eye to reach the target tissues, resulting in low drug bioavailability. Composite nano-in-micro drug delivery systems as a solution, capable of simultaneously addressing issues such as poor ocular barrier penetration, surface adhesion, and bioavailability. This review explores different fabrication methods, materials, and design strategies for composite nano-in-micro drug delivery systems aimed at treating glaucoma. The review concludes that composite drug delivery systems hold promise as an effective strategy to enhance the bioavailability of glaucoma medications and extend drug release duration. Furthermore, these Composite systems offer innovative approaches to gene and targeted therapy, opening new avenues for the treatment of glaucoma.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.