{"title":"Plasma proteomic signature for preoperative prediction of microvascular invasion in HCC.","authors":"Xinrui Shi, Yunzheng Zhao, Ke Li, Qingyu Li, Yifeng Cui, Yuhang Sui, Liang Zhao, Haonan Zhou, Yongsheng Yang, Jiajun Li, Meng Zhou, Zhaoyang Lu","doi":"10.1016/j.jhepr.2025.101481","DOIUrl":null,"url":null,"abstract":"<p><strong>Background & aims: </strong>Microvascular invasion (MVI) is a major determinant of poor prognosis in hepatocellular carcinoma (HCC). However, reliable non-invasive biomarkers for the preoperative evaluation and diagnosis of MVI are urgently needed in clinical practice.</p><p><strong>Methods: </strong>Plasma samples were collected from 160 patients with HCC (80 MVI-positive and 80 MVI-negative) from four medical centers. Plasma proteomic profiling was obtained using data-independent acquisition mass spectrometry. Principal component analysis and differential protein abundance analysis were used to assess the proteomic changes between the two groups of patients. Protein biomarker candidates were further quantitatively validated by ELISA.</p><p><strong>Results: </strong>Proteomic analysis of 50 patients with HCC (25 MVI-positive and 25 MVI-negative) identified three plasma protein biomarkers (TALDO1, PDIA3, and PGK1) that are significantly upregulated in MVI-positive patients (FDR-adjusted <i>p</i> <0.05) and were subsequently cross-validated by ELISA. A machine learning-based <b>P</b>lasma p<b>R</b>otein MV<b>I</b> risk <b>M</b>odel (PRIM) was developed for the preoperative prediction of MVI. PRIM demonstrated excellent discriminatory ability, with areas under the receiver operating characteristic curve values ranging from 0.78 to 0.99 across three independent cohorts. Single-cell RNA sequencing of five HCC tumors provided a cell type-resolved atlas of biomarker expression, showing their predominant presence in malignant cells and macrophages within the MVI-positive tumor microenvironment compared with MVI-negative tumors.</p><p><strong>Conclusions: </strong>This study provides a comprehensive analysis of the plasma proteomic landscape in HCC and presents a promising blood-based tool for preoperative MVI risk stratification.</p><p><strong>Impact and implications: </strong>This study highlights the transformative potential of plasma proteomic profiling in improving the preoperative prediction of microvascular invasion in hepatocellular carcinoma (HCC). By integrating data-independent acquisition mass spectrometry and machine learning, we identified three plasma protein biomarkers (TALDO1, PDIA3, and PGK1) and developed the Plasma pRotein MVI risk Model (PRIM), which demonstrated robust diagnostic accuracy across multicenter validation cohorts. These findings pave the way for preoperative risk stratification and personalized therapeutic strategies in HCC management.</p>","PeriodicalId":14764,"journal":{"name":"JHEP Reports","volume":"7 9","pages":"101481"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12355497/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JHEP Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jhepr.2025.101481","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background & aims: Microvascular invasion (MVI) is a major determinant of poor prognosis in hepatocellular carcinoma (HCC). However, reliable non-invasive biomarkers for the preoperative evaluation and diagnosis of MVI are urgently needed in clinical practice.
Methods: Plasma samples were collected from 160 patients with HCC (80 MVI-positive and 80 MVI-negative) from four medical centers. Plasma proteomic profiling was obtained using data-independent acquisition mass spectrometry. Principal component analysis and differential protein abundance analysis were used to assess the proteomic changes between the two groups of patients. Protein biomarker candidates were further quantitatively validated by ELISA.
Results: Proteomic analysis of 50 patients with HCC (25 MVI-positive and 25 MVI-negative) identified three plasma protein biomarkers (TALDO1, PDIA3, and PGK1) that are significantly upregulated in MVI-positive patients (FDR-adjusted p <0.05) and were subsequently cross-validated by ELISA. A machine learning-based Plasma pRotein MVI risk Model (PRIM) was developed for the preoperative prediction of MVI. PRIM demonstrated excellent discriminatory ability, with areas under the receiver operating characteristic curve values ranging from 0.78 to 0.99 across three independent cohorts. Single-cell RNA sequencing of five HCC tumors provided a cell type-resolved atlas of biomarker expression, showing their predominant presence in malignant cells and macrophages within the MVI-positive tumor microenvironment compared with MVI-negative tumors.
Conclusions: This study provides a comprehensive analysis of the plasma proteomic landscape in HCC and presents a promising blood-based tool for preoperative MVI risk stratification.
Impact and implications: This study highlights the transformative potential of plasma proteomic profiling in improving the preoperative prediction of microvascular invasion in hepatocellular carcinoma (HCC). By integrating data-independent acquisition mass spectrometry and machine learning, we identified three plasma protein biomarkers (TALDO1, PDIA3, and PGK1) and developed the Plasma pRotein MVI risk Model (PRIM), which demonstrated robust diagnostic accuracy across multicenter validation cohorts. These findings pave the way for preoperative risk stratification and personalized therapeutic strategies in HCC management.
期刊介绍:
JHEP Reports is an open access journal that is affiliated with the European Association for the Study of the Liver (EASL). It serves as a companion journal to the highly respected Journal of Hepatology.
The primary objective of JHEP Reports is to publish original papers and reviews that contribute to the advancement of knowledge in the field of liver diseases. The journal covers a wide range of topics, including basic, translational, and clinical research. It also focuses on global issues in hepatology, with particular emphasis on areas such as clinical trials, novel diagnostics, precision medicine and therapeutics, cancer research, cellular and molecular studies, artificial intelligence, microbiome research, epidemiology, and cutting-edge technologies.
In summary, JHEP Reports is dedicated to promoting scientific discoveries and innovations in liver diseases through the publication of high-quality research papers and reviews covering various aspects of hepatology.