{"title":"Optimized Coil Design for Enhanced Electric Field Induction in Peripheral Nerve Stimulation","authors":"Jaeu Park;Kyeong Jae Lee;Pritish Nagwade;Jinwoong Jeong;Jeong Hoan Park;Hongsoo Choi;Sohee Kim;Sanghoon Lee","doi":"10.1109/TNSRE.2025.3599634","DOIUrl":null,"url":null,"abstract":"Peripheral nerve electrical stimulation is widely used for the treatment of neuropathic pain and neural regeneration. However, it often induces adverse biological reactions and unintended activation of surrounding neural tissues. As an alternative, peripheral nerve magnetic stimulation offers a promising, less invasive approach that enables targeted nerve stimulation without direct tissue contact. Despite its potential, it is constrained by the bulkiness of coils and excessive heat generation due to the high currents required. To address these limitations, we conducted a study on coil design optimized for peripheral nerve modulation. Our approach, supported by simulations and animal experiments, focused on optimizing coil geometry to maximize the induced electric field gradient. Among various designs, a four-leaf rhombus-shaped coil demonstrated the highest gradient at the center of the interface. In rat sciatic nerve experiments, this coil, driven by a rectangular pulse with a <inline-formula> <tex-math>$200~\\mu $ </tex-math></inline-formula>s rise time and 25 V amplitude, successfully elicited compound muscle action potentials in both the tibial anterior and gastrocnemius muscles. This study presents design guidelines for peripheral nerve stimulation (PNS) coils based on magnetic stimulation as an alternative to conventional electrical stimulation. The proposed approach may serve as a foundation for the development of advanced, miniaturized, and energy-efficient neural stimulation coils.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"3225-3236"},"PeriodicalIF":5.2000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11127116","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11127116/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Peripheral nerve electrical stimulation is widely used for the treatment of neuropathic pain and neural regeneration. However, it often induces adverse biological reactions and unintended activation of surrounding neural tissues. As an alternative, peripheral nerve magnetic stimulation offers a promising, less invasive approach that enables targeted nerve stimulation without direct tissue contact. Despite its potential, it is constrained by the bulkiness of coils and excessive heat generation due to the high currents required. To address these limitations, we conducted a study on coil design optimized for peripheral nerve modulation. Our approach, supported by simulations and animal experiments, focused on optimizing coil geometry to maximize the induced electric field gradient. Among various designs, a four-leaf rhombus-shaped coil demonstrated the highest gradient at the center of the interface. In rat sciatic nerve experiments, this coil, driven by a rectangular pulse with a $200~\mu $ s rise time and 25 V amplitude, successfully elicited compound muscle action potentials in both the tibial anterior and gastrocnemius muscles. This study presents design guidelines for peripheral nerve stimulation (PNS) coils based on magnetic stimulation as an alternative to conventional electrical stimulation. The proposed approach may serve as a foundation for the development of advanced, miniaturized, and energy-efficient neural stimulation coils.
期刊介绍:
Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.